
sdmx-im Documentation
Release 0.0.1

sdmx-twg

Nov 05, 2020

TECHNICAL SPECIFICATION

1 Introduction 1
1.1 Framework for SDMX Technical Standards . 1

1.1.1 Introduction . 1
1.1.2 Changes from Previous Version . 2
1.1.3 Processes and Business Scope . 3
1.1.4 The SDMX Information Model . 11
1.1.5 SDMX-EDI . 11
1.1.6 SDMX-ML . 12
1.1.7 Conformance . 13
1.1.8 Dependencies on SDMX content-oriented guidelines 13
1.1.9 Looking Forward . 14

1.2 Information Model . 14
1.2.1 Change History . 14
1.2.2 Introduction . 19
1.2.3 Actors and Use Cases . 23
1.2.4 SDMX Base Package . 28
1.2.5 Specific Item Schemes . 45
1.2.6 Data Structure Definition and Dataset . 58
1.2.7 Cube . 75
1.2.8 Metadata Structure Definition and Metadata Set . 75
1.2.9 Hierarchical Code List . 88
1.2.10 Structure Set and Mappings . 93
1.2.11 Constraints . 104
1.2.12 Data Provisioning . 112
1.2.13 Process . 117
1.2.14 Transformations and Expressions . 118
1.2.15 Appendix 1: A Short Guide To UML in the SDMX Information Model 121

i

ii

CHAPTER

ONE

INTRODUCTION

We are in the process of cleaning up, unifying and simplifying the repositories associated to the SDMX stan-
dard’s formats, documentation, technical references, guidelines and examples. This is done in the context of the
forthcomming version 3.0.0 of the SDMX standard . . .

During this process we intend to regroup and simplify the access to the documentation of the standard.

Please bare with us whilst this is being executed.

Progress will be visible in the develop and other branches of this repository.

1.1 Framework for SDMX Technical Standards

1.1.1 Introduction

The Statistical Data and Metadata Exchange (SDMX) initiative (http://www.sdmx.org) sets standards that can
facilitate the exchange of statistical data and metadata using modern information technology, with an emphasis on
aggregated data.

There are several sections to the SDMX Technical Specification:

1. SDMX Framework Document – this document. The purpose of this document is to introduce SDMX and
its scope. This document will be revised in due course to include the conformance requirements.

2. The SDMX Information Model - the information model on which syntax-specific implementations de-
scribed in the other sections are based. This is intended for technicians wishing to understand the complete
scope of the technical standards in a syntax-neutral form. It includes as an annex a tutorial on UML (Unified
Modelling Language). This document is not normative.

3. SDMX-EDI - the UN/EDIFACT format for exchange of SDMX-structured data and metadata. This docu-
ment contains normative sections describing the use of the UN/EDIFACT syntax in SDMX messages. This
document has normative sections.

4. SDMX-ML - the XML format for the exchange of SDMX-structured data and metadata. This document has
normative sections describing the use of the XML syntax in SDMX messages, and is accompanied by a set
of normative XML schemas and non-normative sample XML document instances.

5. The SDMX Registry Specification provides for a central registry of information about available data and
reference metadata, and for a repository containing structural metadata and provisioning information. This
specification defines the basic services offered by the SDMX Registry: registration of data and metadata;
querying for data and metadata; and subscription/notification regarding updates to the registry. This docu-
ment has normative sections.

6. The SDMX Technical Notes – this is a guide to help those who wish to use the SDMX specifications. It
includes notes on the expressive differences of the various messages and syntaxes; versioning; maintenance
agencies; the SDMX Registry. This document is not normative.

7. Web Services Guidelines – this is a guide for those who wish to implement SDMX using web-services tech-
nologies. It places an emphasis on those aspects of web-services technologies (including, but not requiring,

1

http://www.sdmx.org

sdmx-im Documentation, Release 0.0.1

an SDMX-conformant registry) which will work regardless of the development environment or platform
used to create the web services. This document contains normative sections.

1.1.2 Changes from Previous Version

The 2.0 version of this standard represented a significant increase in scope, and also provided more complete
support in those areas covered in the version 1.0 specification. Version 2.0 of this standard is backward-compatible
with version 1.0, so that existing implementations can be easily migrated to conformance with version 2.0.

The 2.1 version of this standard represents a set of changes resulting from several years of implementation ex-
perience with the 2.0 standard. The changes do not represent a major increase in scope or functionality, but do
correct some bugs, and add functionalities in some cases. Major changes in SDMX-ML include a much stronger
alignment of the XML Schemas with the Information Model, to emphasize inheritance and object-oriented fea-
tures, and increased precision and flexibility in the attachment of metadata reports to specific objects in the SDMX
Information Model.

Note that the idea of backward-compatibility in the standards is based on the information model. In
both releases, some non-backward-compatible changes have been made to the SDMX-ML formats.
The same set of information required to use version 1.0 of the specification will permit the use of
the same features in the version 2.0 specifications, however. Thus, a Data Structure Definition is
easily translated from version 1.0 to version 2.0, without requiring any new information regarding
structures, etc. There have been no changes to the SDMX-EDI format.

The major changes from 1.0 to 2.0 can be briefly summarized:

• Reference Metadata: In addition to describing and specifying data structures and formats (along with
related structural metadata), the version 2.0 specification also provides for the exchange of metadata which
is distinct from the structural metadata in the 1.0 version. This category includes “reference” metadata
(regarding data quality, methodology, and similar types – it can be configured by the user to include whatever
concepts require reporting); metadata related to data provisioning (release calendar information, description
of the data and metadata provided, etc.); and metadata relevant to the exchange of categorization schemes.

• SDMX Registry: Provision is made in the 2.0 standard for standard communication with registry services,
to support a data-sharing model of statistical exchange. These services include registration of data and
metadata, querying of registered data and metadata, and subscription/notification.

• Structural Metadata: The support for exchange of statistical data and related structural metadata has been
expanded. Some support is provided for qualitative data; data cube structures are described; hierarchical
code lists are supported; relationships between data structures can be expressed, providing support for
extensibility of data structures; and the description of functional dependencies within cubes are supported.

The major changes from 2.0 to 2.1 can be briefly summarized:

• Web-Services-Oriented Changes: Several organizations have been implementing web services applica-
tions using SDMX, and these implementations have resulted in several changes to the specifications. Be-
cause the nature of SDMX web services could not be anticipated at the time of the original drafting of the
specifications, the web services guidelines have been completely re-developed.

• Presentational Changes: Much work has gone into using various technologies for the visualization of
SDMX data and metadata, and some changes have been proposed as a result, to better leverage this graphical
visualization. These changes are largely to leverage the Cross-domain Concepts of the Content Oriented
Guidelines.

• Consistency Issues: There have been some areas where the draft specifications were inconsistent in minor
ways, and these have been addressed.

• Clarifications in Documentation: In some cases it has been identified that the documentation of specific
fields within the standard needed clarification and elaboration, and these issues have been addressed.

• Optimization for XML Technologies: Implementation has shown that it is possible to better organize
the XML schemas for use within common technology development tools which work with XML. These
changes are primarily focused on leveraging the object-oriented features of W3C XML Schema to allow for
easier processing of SDMX data and metadata.

2 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

• Consistency between the SDMX-ML and the SDMX Information Model: Certain aspects of the XML
schemas and UML model have been more closely aligned, to allow for easier comprehension of the SDMX
model.

• Technical Bugs: Some minor technical bugs have been identified in the registry interfaces and elsewhere.
These bugs have been addressed.

• Support for Non-Time-Series Data in the Generic Format: One area which has been extended is the
ability to express non-time-series data as part of the generic data message.

• Simplification of the data structure definition - specific message types: Both time series (version 2.0
Compact) and non-time series data sets (version 2.0 Cross Sectional) use the same underlying structure for
a structure-specific formatted message, which is specific to the Data Structure Definition of the data set.

• Simplification and better support for the metadata structure: New use cases have been reported and
these are now supported by a re-modelled metadata structure definition.

• Support for partial item schemes such as a code list: The concept of a partial (sub-set) item scheme such
as a partial code list for use in exchange scenarios has been introduced.

1.1.3 Processes and Business Scope

Process Patterns

SDMX identifies three basic process patterns regarding the exchange of statistical data and metadata. These can
be described as follows:

1. Bilateral exchange: All aspects of the exchange process are agreed between counterparties, including the
mechanism for exchange of data and metadata, the formats, the frequency or schedule, and the mode used
for communications regarding the exchange. This is perhaps the most common process pattern.

2. Gateway exchange: Gateway exchanges are an organized set of bilateral exchanges, in which several data
and metadata collecting organizations or individuals agree to exchange the collected information with each
other in a single, known format, and according to a single, known process. This pattern has the effect
of reducing the burden of managing multiple bilateral exchanges (in data and metadata collection) across
the sharing organizations/individuals. This is also a very common process pattern in the statistical area,
where communities of institutions agree on ways to gain efficiencies within the scope of their collective
responsibilities.

3. Data-sharing exchange: Open, freely available data formats and process patterns are known and standard.
Thus, any organization or individual can use any counterparty’s data and metadata (assuming they are per-
mitted access to it). This model requires no bilateral agreement, but only requires that data and metadata
providers and consumers adhere to the standards.

This document specifies the SDMX standards designed to facilitate exchanges based on any of these process
patterns, and shows how SDMX offers advantages in all cases. It is possible to agree bilaterally to use a standard
format (such as SDMX-EDI or SDMX-ML); it is possible for data senders in a gateway process to use a standard
format for data exchange with each other, or with any data providers who agree to do so; it is possible to agree to
use the full set of SDMX standards to support a common data-sharing process of exchange, whether based on an
SDMX-conformant registry or some other architecture.

The standards specified here specifically support a data-sharing process based on the use of central registry ser-
vices. Registry services provide visibility into the data and metadata existing within the community, and support
the access and use of this data and metadata by providing a set of triggers for automated processing. The data or
metadata itself is not stored in a central registry – these services merely provide a useful set of metadata about
the data (and additional metadata) in a known location, so that users/applications can easily locate and obtain
whatever data and/or metadata is registered. The use of standards for all data, metadata, and the registry services
themselves is ubiquitous, permitting a high level of automation within a data-sharing community.

It should be pointed out that these different process models are not mutually exclusive – a single system capable of
expressing data and metadata in SDMX-conformant formats could support all three scenarios. Different standards
may be applicable to different processes (for example, many registry services interfaces are used only in a data-
sharing scenario) but all have a common basis in a shared information model.

1.1. Framework for SDMX Technical Standards 3

sdmx-im Documentation, Release 0.0.1

In addition to looking at collection and reporting, it is also important to consider the dissemination of data. Data
and metadata – no matter how they are exchanged between counterparties in the process of their development and
creation – are all eventually supplied to an end user of some type. Often, this is through specific applications
inside of institutions. But more and more frequently, data and metadata are also published on websites in various
formats. The dissemination of data and its accompanying metadata on the web is a focus of the SDMX standards.
Standards for statistical data and metadata allow improvements in the publication of data – it becomes more easily
possible to process a standard format once the data is obtained, and the data and metadata are linked together,
making the comprehension and further processing of the data easier.

In discussions of statistical data, there are many aspects of its dissemination which impact data quality: data
discovery, ease of use, and timeliness. SDMX standards provide support for all of these aspects of data dissemi-
nation. Standard data formats promote ease of use, and provide links to relevant metadata. The concept of registry
services means that data and metadata can more easily be discovered. Timeliness is improved throughout the data
lifecycle by increases in efficiency, promoted through the availability of metadata and ease of use.

It is important to note that SDMX is primarily focused on the exchange and dissemination of statistical data and
metadata. There may also be many uses for the standard model and formats specified here in the context of internal
processing of data that are not concerned with the exchange between organizations and users, however. It is felt
that a clear, standard formatting of data and metadata for the purposes of exchange and dissemination can also
facilitate internal processing by organizations and users, but this is not the focus of the specification.

SDMX and Process Automation

Statistical data and metadata exchanges employ many different automated processes, but some are of more general
interest than others. There are some common information technologies that are nearly ubiquitous within infor-
mation systems today. SDMX aims to provide standards that are most useful for these automated processes and
technologies.

Briefly, these can be described as:

1. Batch Exchange of Data and Metadata: The transmission of whole or partial databases between counter-
parties, including incremental updating.

2. Provision of Data and Metadata on the Internet: Internet technology - including its use in private or semi-
private TCP/IP networks - is extremely common. This technology includes XML and web services as
primary mechanisms for automating data and metadata provision, as well as the more traditional static
HTML and database-driven publishing.

3. Generic Processes: While many applications and processes are specific to some set of data and metadata,
other types of automated services and processes are designed to handle any type of statistical data and
metadata whatsoever. This is particularly true in cases where portal sites and data feeds are made available
on the Internet.

4. Presentation and Transformation of Data: In order to make data and metadata useful to consumers, they
must support automated processes that transform them into application-specific processing formats, other
standard formats, and presentational formats. Although not strictly an aspect of exchange, this type of
automated processing represents a set of requirements that must be supported if the information exchange
between counterparties is itself to be supported.

The SDMX standards specified here are designed to support the requirements of all of these automation processes
and technologies.

4 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Statistical Data and Metadata

To avoid confusion about which “data” and “metadata” are the intended content of the SDMX formats specified
here, a statement of scope is offered. Statistical “data” are sets of often numeric observations which typically
have time associated with them. They are associated with a set of metadata values, representing specific concepts,
which act as identifiers and descriptors of the data. These metadata values and concepts can be understood as the
named dimensions of a multi-dimensional co-ordinate system, describing what is often called a “cube” of data.

SDMX identifies a standard technique for modelling, expressing, and understanding the structure of this multi-
dimensional “cube”, allowing automated processing of data from a variety of sources. This approach is widely
applicable across types of data and attempts to provide the simplest and most easily comprehensible technique
that will support the exchange of this broad set of data and related metadata.

The term “metadata” is very broad indeed. A distinction can be made between “structural” metadata – those
concepts used in the description and identification of statistical data and metadata – and “reference” metadata –
the larger set of concepts that describe and qualify statistical data sets and processing more generally, and which
are often associated not with specific observations or series of data, but with entire collections of data or even the
institutions which provide that data.

The SDMX Information Model provides for the structuring not only of data, but also of “reference” metadata.
While these reference metadata structures exist independent of the data and its structural metadata, they are often
linked. The SDMX Information Model provides for the attachment of reference metadata to any part of the
data or structural metadata, as well as for the reporting and exchange of the reference metadata and its structural
descriptions. This function of the SDMX standards supports many aspects of data quality initiatives, allowing as
it does for the exchange of metadata in its broadest sense, of which quality-related metadata is a major part.

Metadata are associated not only with data, but also with the process of providing and managing the flow of data.
The SDMX Information Model provides for a set of metadata concerned with “data provisioning” – metadata
which are useful to those who need to understand the content and form of a data provider’s output. Each data
provider can describe in standard fashion the content of and dependencies within the data and metadata sets which
they produce, and supply information about the scheduling and mechanism by which their data and metadata are
provided. This allows for automation of some validation and control functions, as well as supporting management
of data reporting.

SDMX also recognizes the importance of classification schemes in organizing and managing the exchange and
dissemination of data and metadata. It is possible to express information about classification schemes and domain
categories in SDMX, along with their relationships to data and metadata sets, as well as to categorize other objects
in the model.

The SDMX standards offer a common model, a choice of syntax and, for XML, a choice of data formats which
support the exchange of any type of statistical data meeting the definition above; several optimized formats are
specified based on the specific requirements of each implementation, as described below in the SDMX-ML section.

The formal objects in the information model are presented briefly below, but are also discussed in more detail
elsewhere in this specification.

The SDMX View of Statistical Exchange

Version 1.0 of ISO/TS 17369 SDMX covered statistical data sets and the metadata related to the structure of these
data sets. This scope was useful in supporting the different models of statistical exchange (bilateral exchange,
gateway exchange, and data-sharing) but was not by itself sufficient to support them completely. Versions 2.0
and 2.1 provide a much more complete view of statistical exchange, so that an open data-sharing model can be
fully supported, and other models of exchange can be more completely automated. In order to produce technical
standards that will support this increased scope, the SDMX Information Model provides a broader set of formal
objects which describe the actors, processes, and resources within statistical exchanges.

It is important to understand the set of formal objects not only in a technical sense, but also in terms of what they
represent in the real-world exchange of statistical data and metadata.

The first version of SDMX provided for data sets - specific statistical data reported according to a specific structure,
for a specific time range - and for data structure definitions - the metadata which describes the structure of statistical
data sets. These are important objects in statistical exchanges, and are retained and enhanced in the second version

1.1. Framework for SDMX Technical Standards 5

sdmx-im Documentation, Release 0.0.1

Fig. 1.1: High Level Schematic of Major Artefacts in the SDMX Information Model

6 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

of the standards in a backward-compatible form. A related object in statistical exchanges is the “data flow” - this
supports the concept of data reporting or dissemination on an ongoing basis. “Data flows” can be understood as
data sets which are not bounded by time. Data structures are owned and maintained by agencies - in a similar
fashion, data flows are owned by maintenance agencies.

Versions 2.0 and 2.1 – like version 1.0 – allow for the publication of statistical data (and the related structural
metadata) but also provide for the standard, systematic representation of reference metadata. Reference metadata
are reported not as an integral part of a data set, but independent of the statistical data. SDMX provides for
reference “metadata sets”, “metadata structure definitions”, and “metadata flows”. These objects are very similar
to data sets, data structure definitions, and data flows, but they concern reference metadata rather than statistical
observations. In the same way that data providers may publish statistical data, they may also publish reference
metadata. Metadata structural definitions are maintained by agencies in a fashion similar to the way that agencies
maintain data structure definitions, the structural definitions of data sets.

The structural definitions of both data and reference metadata associate specific statistical concepts with their
representations, whether textual, coded, etc. In SDMX version 2.0/2.1, these concepts are taken from a “concept
scheme” which is maintained by a specific agency. Concept schemes group a set of concepts, provide their defi-
nitions and names, and allow for semantic relationships to be expressed, when some concepts are specializations
of others. It is possible for a single concept scheme to be used both for data structures - key families - and for
reference metadata structures.

Inherent in any statistical exchange – and in many dissemination activities - is a concept of “service level agree-
ment”, even if this is not formalized or made explicit. SDMX incorporates this idea in objects termed “provision
agreements”. Data providers may provide data to many different data flows. Data flows may incorporate data com-
ing from more than one data provider. Provision agreements are the objects which tell you which data providers
are supplying what data to which data flows. The same is true for metadata flows.

Provision agreements allow for a variety of information to be made available: the schedule by which statistical
data or metadata is reported or published, the specific topics about which data or metadata is reported within
the theoretically possible set of data (as described by a data structure definition or reference metadata structure
definition), and the time period covered by the statistical data and metadata. This set of information is termed
“constraint” in the SDMX Information Model.

A brief summary of the objects described in the information model includes:

• Data Set: Data is organized into discrete sets, which include particular observations for a specific period of
time. A data set can be understood as a collection of similar data, sharing a structure, which covers a fixed
period of time.

• Data Structure Definition (DSD, also known as Key Family in Version 2.0): Each data set has a set
of structural metadata. These descriptions are referred to in SDMX as Data Structure Definitions, which
include information about how concepts are associated with the measures, dimensions, and attributes of a
data “cube,” along with information about the representation of data and related identifying and descriptive
(structural) metadata. In Version 2.1, the term “Key Family” is replaced by “Data Structure Definition”
(DSD) both in XML Schemas and the Information Model.

• Code list: Code lists enumerate a set of values to be used in the representation of dimensions, attributes,
and other structural parts of SDMX. They can be supplemented by other structural metadata which indicates
how codes are organized into hierarchies.

• Organisation Scheme: Organisations and organisation structure can be defined in an Organisation Scheme.
Specific Organisation Schemes exist for Maintenance Agency, Data Provider, Data Consumer, and Organi-
sation Unit.

• Category Scheme and Categorisation: Category schemes are made up of a hierarchy of categories, which
in SDMX may include any type of useful classification for the organization of data and metadata. A Cat-
egorisation links a category to an identifiable object. In this way sets of objects can be categorised. A
statistical subject-matter domain scheme is implemented in SDMX as a Category Scheme.

• Concept Scheme: A concept scheme is a maintained list of concepts that are used in data structure defini-
tions and metadata structure definitions. There can be many such concept schemes. A “core” representation
of the concept can be specified (e.g. a core code list, or other representation such as “date”). Note that this
core representation can be overridden in the data structure definition or metadata structure definition that

1.1. Framework for SDMX Technical Standards 7

sdmx-im Documentation, Release 0.0.1

uses the concept. Indeed, organisations wishing to remain with version 1.0 key family schema specifications
will continue to declare the representation in the key family definition.

• Metadata Set: A reference metadata set is a set of information pertaining to an object within the formal
SDMX view of statistical exchange: they may describe the maintainers of data or structural definitions; they
may describe the schedule on which data is released; they may describe the flow of a single type of data
over time; they may describe the quality of data, etc. In SDMX, the creators of reference metadata may
take whatever concepts they are concerned with, or obliged to report, and provide a reference metadata set
containing that information.

• Metadata Structure Definition: A reference metadata set also has a set of structural metadata which
describes how it is organized. This metadata set identifies what reference metadata concepts are being re-
ported, how these concepts relate to each other (typically as hierarchies), what their presentational structure
is, how they may be represented (as free text, as coded values, etc.), and with which formal SDMX object
types they are associated.

• Dataflow Definition: In SDMX, data sets are reported or disseminated according to a data flow definition.
The data flow definition identifies the data structure definition and may be associated with one or more sub-
ject matter domains via a Categorisation (this facilitates the search for data according to organised category
schemes). Constraints, in terms of reporting periodicity or sub set of possible keys that are allowed in a data
set, may be attached to the data flow definition.

• Metadataflow Definition: A metadata flow definition is very similar to a data flow definition, but describes,
categorises, and constrains metadata sets.

• Data Provider: An organization which produces data or reference metadata is termed a data provider.

• Provision Agreement: The set of information which describes the way in which data sets and metadata
sets are provided by a data provider. A provision agreement can be constrained in much the same way as
a data or metadata flow definition. Thus, a data provider can express the fact that it provides a particular
data flow covering a specific set of countries and topics, Importantly, the actual source of registered data or
metadata is attached to the provision agreement (in terms of a URL). The term “agreement” is used because
this information can be understood as the basis of a “service-level agreement”. In SDMX, however, this is
informational metadata to support the technical systems, as opposed to any sort of contractual information
(which is outside the scope of a technical specification).

• Constraint: Constraints describe a subset of a data source or metadata source, and may also provide in-
formation about scheduled releases of data. They are associated with data providers, provision agreements,
data flows, metadataflows, data structure definitions and metadata structure definitions.

• Structure Set: Structure sets provide a mechanism for grouping structural metadata together to form a
complete description of the relationships between specific, related sets of data and metadata. They can
be used to map dimensions and attributes to one another, to map concepts, to map code lists, and to map
category schemes. They can be used to describe “cubes” of data, even when the data within the cube does
not share a single dimensionality.

• Reporting Taxonomy: A reporting taxonomy allows an organisation to link (possibly in a hierarchical
way) a number of cube or data flow definitions which together form a complete “report” of data or metadata.
This supports primary reporting which often comprises multiple cubes of heterogeneous data, but may also
support other collection and reporting functions. It also supports the specification of publications such as a
yearbook, in terms of the data or metadata contained in the publication.

• Process: The process class provides a way to model statistical processes as a set of interconnected process
steps. Although not central to the exchange and dissemination of statistical data and metadata, having
a shared description of processing allows for the interoperable exchange and dissemination of reference
metadata sets which describe processes-related concepts.

• Hierarchical Code List: This supports the specification of code hierarchies. The codes themselves are
referenced from the code lists in which they are maintained. The Hierarchical Code List thus specifies the
organisation of the codes in one or more hierarchies, but does not define the codes themselves.

Notes on Data Structuring

A “cube” is a rich, multi-dimensional construct, which can be viewed along any of its axes (or “dimensions”).
Whilst the full structure of cube data can be described in SDMX, the actual “data” specification of SDMX takes

8 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

a slightly narrower view of these requirements in its version 2.0/2.1 specifications for the purposes of formatting
the data for transmission. The view of data in many SDMX formats is primarily as time series – that is, as a set
of observations which are organized around the time dimension, so that each observation occurs progressively
through time.

There are, however, many types of statistical data which are not typically organized for exchange as time series
where data are organized around some other, non-time dimension of the cube – what is often called “cross-
sectional” data. SDMX supports a unified format that represents in the data set an organisation of the data along
any single dimension. In this context, time series is a particular case of the unified format.

Another type of structure commonly found in statistical “cubes” of data is the hierarchical classification, used to
describe the points along any of its dimensions (or axes). In the 1.0 version, SDMX standards did not provide full
support for this functionality. The introduction of these hierarchical classifications is present in the current version
of the standard.

Further, there is support for the expression of functional dependencies between the various dimensions of a cube,
giving support for better processing of “sparse cubes”. This is an aspect of “constraints”, which allow for the
framing of a cube region, or for the provision of a set of valid keys within the total set of keys described by the
data structure definition.

Notes on Reference Metadata Structuring

Metadata structures are based on the idea that concepts can be organised into semantic and presentational hierar-
chies, and that these hierarchies can form the basis for the structuring of XML reporting formats. There are three
message types in SDMX-ML which serve this purpose: the Structure message (providing the metadata structure
definition), the Generic Metadata message (providing a single format for any metadata structure definition), and
the Structure-specific Metadata message (providing a metadata structure definition-specific format). Typically,
this mechanism is suited to supporting reference metadata reporting and dissemination.

The Metadata Structure Definition takes any concept from concept schemes, and describes how they can be formed
into a reporting or dissemination structure as metadata attributes – either as a flat list, or as a hierarchy. The
metadata attributes are assigned representations (coded, textual, etc.) and the number of occurrences. The “target”
of the metadata – that is, the class of process, information, organisation, exchange, etc. – which is the subject of
the metadata is described. Because the SDMX Information Model gives a formalization of statistical exchange and
dissemination, the model can be used as a typology of the different actors and resources within statistical activities.
Thus, the “targets” (subjects) of reference metadata sets and metadata flows can be described as corresponding to
some standard class by reference to this model.

As with data structures, the generic format for metadata sets provides a known document structure, whilst the
structure specific format is derived specifically from a metadata structure definition and can perform a higher
degree of schema validation.

SDMX Registry Services

In order to provide visibility into the large amount of data and metadata which exists within the SDMX model
of statistical exchange, it is felt that an architecture based on a set of registry services is potentially useful. A
“registry” – as understood in web-services terminology – is an application which maintains and stores metadata for
querying, and which can be used by any other application in the network with sufficient access privileges (though
note that the mechanism of access control is outside of the scope of the SDMX standard). It can be understood as
the index of a distributed database or metadata repository which is made up of all the data provider’s data sets and
reference metadata sets within a statistical community, located across the Internet or similar network.

Note that the SDMX registry services are not concerned with the storage of data or reference metadata. The
assumption is that data and reference metadata lives on the sites of its data providers. The SDMX registry services
concern themselves with providing visibility of the data and reference metadata, and information needed to access
the data and reference metadata. Thus, a registered data set will have its URL available in the registry, but not the
data itself. An application which wishes to access that data would query the registry, perhaps by drilling down via
a Category Scheme and Dataflow, for the URL of a registered data source, and then retrieve the data directly from
the data provider (using an SDMX-ML query message or other mechanism).

SDMX does not require a particular technology implementation of the registry – instead, it specifies the standard
interfaces which may be supported by a registry. Thus, users may implement an SDMX-conformant registry in

1.1. Framework for SDMX Technical Standards 9

sdmx-im Documentation, Release 0.0.1

any fashion they choose, so long as the interfaces are supported as specified here. These interfaces are expressed
as XML documents, and form a new part of the SDMX-ML language.

The registry services discussed here can be briefly summarized:

• Maintenance of Structural Metadata: This registry service allows users with maintenance agency access
privileges to submit and modify structural metadata. In this aspect the registry is acting as a structural
metadata repository. However, it is permissible in an SDMX structure to submit just the “stub” of the
structural object, such as a code list, and for this stub to reference the actual location from where the
metadata can be retrieved, either from a file or a structural metadata resource, such as another registry.

• Registration of Data and Metadata Sources: This registry service allows users with maintenance agency
access privileges to inform the registry of the existence and location (for retrieval) of data sets and reference
metadata sets. The registry stores metadata about these objects, and links it to the structural metadata that
give sufficient structural information for an application to process it, or for an application to discover its
existence. Objects in the registry are organized and categorized according to one or more category schemes.

• Querying: The registry services have interfaces for querying the metadata contained in a registry, so that
applications and users can discover the existence of data sets and reference metadata sets, structural meta-
data, the providers/agencies associated with those objects, and the provider agreements which describe how
the data and metadata are made available, and how they are categorized.

• Subscription/Notification: It is possible to “subscribe” to specific objects in a registry, so that a notification
will be sent to all subscribers whenever the registry objects are updated.

Web services

Web services allow computer applications to exchange data directly over the Internet, essentially allowing modular
or distributed computing in a more flexible fashion than ever before. In order to allow web services to function,
however, many standards are required: for requesting and supplying data; for expressing the enveloping data
which is used to package exchanged data; for describing web services to one another, to allow for easy integration
into applications that use other web services as data resources.

SDMX provides guidelines for using these standards in a fashion which will promote interoperability among
SDMX web services, and allow for the creation of generic client applications which will be able to communicate
meaningfully with any SDMX web service which implements these guidelines.

More specifically, the SDMX web services guidelines offer:

• A normative interface (WSDL) for SOAP-based web services: The 2.0 Web-Services Guidelines contained
a set of web-services functions, but these have been found through implementation to be insufficient for the
types of SDMX-based web services now being developed. Furthermore, the operations and their payload
have now become normative (WSDL).

• A normative interface (WADL) for RESTful web services: The RESTful API focuses on simplicity. The
aim is not to replicate the full semantic richness of the SDMX-ML Query message but to make it simple to
perform a limited set of standard queries. Also, in contrast to other parts of the SDMX specification, the
RESTful API focuses solely on data retrieval (via HTTP GET).

A normative list of common error codes: When web services are used, it is necessary to have error codes which
can help to explain the situation when problems are encountered. Prior to version 2.1 of the SDMX standard, there
was no set of agreed error codes for use with SDMX web services. Version 2.1 of the SDMX standard fills that
gap.

10 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

1.1.4 The SDMX Information Model

SDMX provides a way of modelling statistical data, and defines the set of metadata constructs used for this
purpose. Because SDMX specifies formats in two syntaxes for expressing data and structural metadata, the model
is used as a mechanism for guaranteeing that transformation between the different formats are lossless. All of the
formats are syntax-bound expressions of the common information model. SDMX version 1.0 has based itself on
GESMES/TS as an input to the model and formats, both to build on the proven success of this model for time
series data exchange, and to ensure backward compatibility with existing GESMES/TS-based systems. Version
2.0/2.1 expands upon the version 1.0 basis to provide a more comprehensive model.

SDMX recognizes that statistical data is structured; in SDMX this structure is termed a Data Structure Definition.
“Data sets” are made up of one or more lower-level “groups”, based on their degrees of similarity. Each group is in
turn comprised of one or more “series” of data. Each series or section has a “key” - values for each of a cluster of
concepts, also called “dimensions” - which identifies it, and one or more “observations”, which typically combine
the time of the observation, and the value of the observation (e.g., measurement). Additionally, metadata may be
attached at any level of this structure as descriptive “attributes”. Code lists (enumerations) and other patterns for
representation of data and metadata are also modelled.

There is some similarity between “cube” structures commonly used to process statistical data, and the Data Struc-
ture Definition idea in the SDMX Information Model. It is important to note that the data as structured according
to the SDMX Information Model is optimized for exchange, potentially with partners who may have no ability
to process a “cube” of data coming from complex statistical systems. SDMX time series can be understood as
“slices” of the cube. Such a slice is identified by its key. A “series” key consists of the values for all dimensions
specified by the key family except time. It is certainly possible to reconstruct and describe data cubes from SDMX-
structured data, and to exchange such databases according to the proposed standards. In version 2.0, it becomes
possible to more fully describe the structure of cubes, with hierarchical code lists, constraints, and relationships
between data structure definitions.

In version 2.0/2.1, the SDMX standards also provide a view of reference metadata: a mechanism for referencing
the meaningful “objects” within the SDMX view of statistical exchange processes (data providers, structures, pro-
visioning agreements, dataflows, metadata flows, etc.) to which metadata is attached; a mechanism for describing
a set of meaningful concepts, of organizing them into a presentational structure, and of indicating how their values
are represented. This is based on a simple, hierarchical view of reference metadata which is common to many
metadata systems and classification/categorization schemes. SDMX provides a model (and XML formats) for
both describing reference metadata structures, and of reporting reference metadata according to those structures.

Version 2.0/2.1 also introduces support for metadata related to the process aspects of statistical exchange. A
step-by-step process can be modelled; information about who is providing data and reference metadata and how
they are providing it can be expressed; and the technical aspects of service-level agreements (and similar types of
provisioning agreements) can be represented.

The SDMX Information Model formally describes all of the objects listed above, so as to present a standard view
of the statistical exchange process.

The SDMX Information Model is presented using UML, and is also described in prose. While the information
model is not normative, it is a valuable tool for understanding and using the normative format specifications.

1.1.5 SDMX-EDI

The SDMX-EDI format is drawn from the GESMES/TS version 3.0 implementation guide, as published as a
standard of the SDMX initiative.

1. Statistical Definitions: An expression of the structural metadata covered by the SDMX information model
in a UN/EDIFACT format.

2. Statistical Data: Optimized for the batch exchange of large amounts of time series data between counter-
parties, it allows for extremely compact expression of large whole or partial data sets. Non time series data,
such as cross-sectional, can be supported if represented as repackaged time series, but there is no direct
support for cross-sectional data in this format.

3. Data Set List: a list of data sets and their structural metadata.

1.1. Framework for SDMX Technical Standards 11

sdmx-im Documentation, Release 0.0.1

The SDMX Information Model provides the constructs which are found in the EDIFACT syntax used for SDMX-
EDI, and those found in the XML syntax of SDMX-ML. Since both syntactic implementations reflect the same log-
ical constructs, SDMX-EDI data and structural metadata messages can be transformed into corresponding SDMX-
ML formats, and vice-versa. Thus, these standards provide for interoperability between the UN/EDIFACT-based
and XML-based systems processing and exchanging statistical data and metadata.

1.1.6 SDMX-ML

While the SDMX-EDI format is primarily designed to support batch exchange, SDMX-ML supports a wider
range of requirements. XML formats are used for many different types of automated processing, and thus must
support more varied processing scenarios. That is why there are several types of messages available as SDMX-ML
formats. Each is suited to support a specific set of processing requirements.

1. Structure Definition: All SDMX-ML message types share a common XML expression of the metadata
needed to understand and process a data set or metadata set, and additional metadata about category schemes
and organisations is included. Also, the structural aspects of data and metadata provision – dataflows and
metadataflows – are described using this format.

2. Generic Data: All statistical data expressible in SDMX-ML can be marked up according to this data format,
in agreement with the contents of a Structure Definition message. It is designed for any scenario where
applications receiving the data need to process it according to a single format. Such applications may need
independent access to the data set’s structure before they process it. Data marked up in this format are not
particularly compact, but they make easily available all aspects of the data set. This format does not provide
strict validation between the data set and its structural definition using a generic XML parser. It supports
the transmission of partial data sets (incremental updates) as well as whole data sets. It supports both the
time-series and the cross-sectional use cases.

3. Structure-specific Data: This format is specific to the Data Structure Definition of the data set (in other
terms, it is DSD-specific) and is created by following mappings between the metadata constructs defined in
the Structure Definition message and the technical specification of the format. It supports the exchange of
large data sets in XML format (typically the size of the data set is 50% of the same data expressed as Generic
Data), provides strict validation of conformance with the DSD using a generic XML parser, and supports
the transmission of partial data sets (incremental updates) as well as whole data sets. The Structure-specific
Data format specified in SDMX 2.1 supports both the time-series and the cross-sectional use cases which
were covered by two distinct formats in SDMX 2.0.

Many XML tools and technologies have expectations about the functions performed by an XML
schema, one of which is a very direct relationship between the XML constructs described in the XML
schema and the tagged data in the XML instance. Strong data typing is also considered normal,
supporting full validation of the tagged data. These message types are designed to support validation
and other expected XML schema functions.

4. Generic Metadata: All reference metadata expressible in SDMX-ML format can be marked up according
to this schema. It performs only a minimum of validation, and is somewhat verbose, but it does support the
creation of generic software tools and services for processing reference metadata.

5. Structure-specific Metadata: For each metadata structure definition, an XML schema specific to that struc-
ture can be created, to perform validation on sets of reported metadata. This structure is less verbose than
the Generic Metadata format, and, because the XML mark-up relates directly to the reported concepts, it is
appropriate for applications that are designed to process a specific type of metadata report. It is analogous
to the Structure-specific Data format for data in its approach to the use of XML.

6. Query: Data and metadata are often published in databases which are available on the web. Thus, it is
necessary to have a standard query document which allows the databases to be queried, and return an
SDMX-ML data, reference metadata, or structure message. The Query document is an implementation
of the SDMX Information Model for use in web services and database-driven applications, allowing for a
standard request to be sent to data providers using these technologies.

7. Registry: All of the possible interactions with the SDMX registry services are supported using SDMX-ML
interfaces. All but one of these documents are based on a synchronous exchange of documents – a “request”
message answered by a “response” message. There are two basic types of request – a “Submit”, which

12 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

writes metadata to the registry services, and a “Query”, which is used to discover that metadata. Registry
interactions provide formats for all types of provisioning metadata, as well as for subscription/notification,
structural metadata, and data and metadata registration. The exception is the (Registry) notification message
which is asynchronous.

Because all of the SDMX-ML formats are implementations of the same information model, and all the data and
metadata messages are derivable from the Structure message which describes a data set or metadata set, it is
possible to have standard mappings between each of the similar formats. These mappings can be implemented in
generic transformation tools, useful to all SDMX-ML users, and not specific to a particular data set’s key family
or metadata set’s structure definition (even though some of the formats they deal with may be). Part of the SDMX-
ML package is the set of mappings between the structure-specific data and metadata formats and the Structure
Definition format from which all are derivable.

1.1.7 Conformance

This section will contain a normative statement of what applications must do to be considered conformant with
the SDMX version 2.1 specifications. This will address both the application functionality that must be supported,
and the contents of an Implementer’s Conformance Statement regarding SDMX conformance.

1.1.8 Dependencies on SDMX content-oriented guidelines

The technical standards proposed here are designed so that they can be used in conjunction with other SDMX
guidelines which are more closely tied to the content and semantics of statistical data exchange. The SDMX
Information Model works equally well with any statistical concept, but to encourage interoperability, it is also
necessary to standardize and harmonize the use of specific concepts and terminology. To achieve this goal, SDMX
creates and maintains guidelines for cross-domain concepts, terminology, and structural definitions. There are
three major parts to this effort.

Cross-Domain Concepts

The SDMX Cross-Domain Concepts is a content guideline concerning concepts which are used across statistical
domains. This list is expected to grow and to be subject to revision as SDMX is used in a growing number of
domains. The use of the SDMX Cross-Domain Concepts, where appropriate, provides a framework to further
promote interoperability among organisations using the technical standards presented here. The harmonization of
statistical concepts includes not only the definitions of the concepts, and their names, but also, where appropriate,
their representation with standard code lists, and the role they play within data structure definitions and metadata
structure definitions.

The intent of this guideline is two-fold: to provide a core set of concepts which can be used to structure statistical
data and metadata, to promote interoperability between systems (“structural metadata”, as described above); and
to promote the exchange of metadata more widely, with a set of harmonized concept names and definitions for
other types of metadata (“reference metadata”, as defined above.)

Metadata Common Vocabulary

The Metadata Common Vocabulary is an SDMX guideline which provides definition of terms to be used for the
comparison and mapping of terminology found in data structure definitions and in other aspects of statistical
metadata management. Essentially, it provides ISO-compliant definitions for a wide range of statistical terms,
which may be used directly, or against which other terminology systems may be mapped. This set of terms is
inclusive of the terminology used within the SDMX Technical Standards.

The MCV provides definitions for terms on which the SDMX Cross-Domain Metadata Concepts work is built.

1.1. Framework for SDMX Technical Standards 13

sdmx-im Documentation, Release 0.0.1

Statistical Subject-Matter Domains

The Statistical Subject-Matter Domains is a listing of the breadth of statistical information for the purposes of
organizing widespread statistical exchange and categorization. It acts as a standard scheme against which the
categorization schemes of various counterparties can be mapped, to facilitate interoperable data and metadata
exchange. It serves another useful purpose, however, which is to allow an organization of corresponding “domain
groups”, each of which could define standard data structure definitions, concepts, etc. within their domains.
Such groups already exist within the international community. SDMX would use the Statistical Subject-Matter
Domains list to facilitate the efforts of these groups to develop the kinds of content standards which could support
the interoperation of SDMX-conformant technical systems within and across statistical domains. The organisation
of the content of such schemes is supported in SDMX as a Category Scheme.

SDMX Statistical Subject-Matter Domains will be listed and maintained by the SDMX Initiative and will be
subject to adjustment.

1.1.9 Looking Forward

The SDMX initiative sees this set of data and metadata formats and registry services interfaces standards as useful
in creating more efficient and open systems for statistical exchange. It is anticipated that SDMX will refine these
standards further as they are implemented, so as to build on the interoperability enabled by having a set of standard
formats and exchanges based on a common information model.

The review process for version 2.0 and 2.1 has suggested that future work should take advantage of a wider
participation of the SDMX user community (statistical offices, central banks and other national and international
organisations dealing with statistics) in further enhancing the Technical Standards and improving its use.

1.2 Information Model

1.2.1 Change History

Version 1.0 – initial release September 2004.

Version 2.0 – release November 2005

Major functional enhancements by addition of new packages:

• Metadata Structure Definition

• Metadata Set

• Hierarchical Code Scheme

• Data and Metadata Provisioning

• Structure Set and Mappings

• Transformations and Expressions

• Process and Transitions

Re-engineering of some SDMX Base structures to give more functionality:

• Item Scheme and Item can have properties – this gives support for complex hierarchical code schemes
(where the property can be used to sequence codes in scheme), and Item Scheme mapping tables (where
the property can give additional information about the map between the two schemes and the between two
Items)

• revised Organisation pattern to support maintained schemes of organisations, such as a data provider

• modified Component Structure pattern to support identification of roles played by components and the
attachment of attributes

• change to inheritance to enable more artefacts to be identifiable and versionable

14 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Introduction of new types of Item Scheme:

• Object Type Scheme to specify object types in support of the Metadata Structure Definition (principally the
object types (classes) in this Information Model)

• Type Scheme to specify types other than object type

• A generic Item Scheme Association to specify the association between Items in two or more Item Schemes,
where such associations cannot be described in the Structure Set and Transformation.

The Data Structure Definition is introduced as a synonym for Key Family though the term Key Family is retained
and used in this specification.

Modification to Data Structure Definition (DSD) to

• align the cross sectional structures with the functionality of the schema

• support Data Structure Definition extension (i.e. to derive and extend a Data Structure Definition from
another Data Structure Definition), thus supporting the definition of a related “set” of key families

• distinguish between data attributes (which are described in a Data Structure Definition) from metadata
attributes (which are described in a metadata structure definition)

• attach data attributes to specific identifiable artefacts (formally this was supported by attachable artefact)

Domain Category Scheme re-named Category Scheme to better reflect the multiple usage of this type of scheme
(e.g. subject matter domain, reporting taxonomy).

Concept Scheme enhanced to allow specification of the representation of the Concept. This specification is the
default (or core) representation and can be overridden by a construct that uses it (such as a Dimension in a Data
Structure Definition).

Revision of cross sectional data set to reflect the functionality of the version 1.0 schema.

Revision of Actors and Use Cases to reflect better the functionality supported.

Version 2.1 – release April 2011

The purpose of this revision is threefold:

• To introduce requested changes to functionality

• To align the model and syntax implementations more closely (note, however, that the model remains syntax
neutral)

• To correct errors in version 2.0

SDMX Base

Basic inheritance and patterns

1. The following attributes are added to Maintainable:

i) isExternalReference

ii) structure URL

iii) serviceURL

2. Added Nameable Artefact and moved the Name and Description associations from Identifiable Artefact to
Nameable Artefact. This allows an artefact to be identified (with id and urn) without the need to specify a
Name.

3. Removed any inheritance from Versionable Artefact with the exception of Maintainable Artefact – this
means that only Maintainable objects can be versioned, and objects contained in a maintainable object
cannot be independently versioned.

4. Renamed MaintenanceAgency to Agency 0 this is its name in the schema and the URN.

5. Removed abstract class Association as a subclass of Item (as these association types are not maintained in
Item Schemes). Specific associations are modelled explicitly (e.g. Categorisation, ItemScheme, Item).

6. Added ActionType to data types.

1.2. Information Model 15

sdmx-im Documentation, Release 0.0.1

7. Removed Coded Artefact and Uncoded Artefact and all subclasses (e.g. Coded Data Attribute and Uncoded
Data Attribute) as the “Representation” is more complex than just a distinction between coded and uncoded.

8. Added Representation to the Component. Removed association to Type.

9. Removed concept role association (to Item) as roles are identified by a relationship to a Concept.

10. Removed abstract class Attribute as both Data Attribute and Metadata Attribute have different properties.
Data Attribute and Metadata Attribute inherit directly from Component.

11. isPartial attribute added to Item Scheme to support partial Item Schemes (e.g. partial Code list).

Representation

1. Removed interval and enumeration from Facet.

2. added facetValueType to Facet.

3. Re-named DataType to facetValueType.

4. Added observationalTimePeriod, inclusiveValueRange and exclusiveValueRange to facetValueType.

5. Added ExtendedFacetType as a sub class of FacetType. This includes Xhtml as a facet type to support this
as an allowed representation for a Metadata Attribute

Organisations

1. Organisation Role is removed and replaced with specific Organisation Schemes of Agency, Data Provider,
Data Consumer, Organisation Unit.

Mapping (Structure Maps)

Updated Item Scheme Association as follows:

1. Renamed to Item Scheme Map to reflect better the sub classes and relate better to the naming in the schema.

2. Removed inheritance of Item Scheme Map from Item Scheme, and inherited directly from Nameable Arte-
fact.

3. Item Association inherits from Identifiable Artefact.

4. Removed Property from the model as this is not supported in the schema.

5. Removed association type between Item Scheme Map and Item, and Association and Item.

6. Removed Association from the model.

7. Made Item Association a sub class of Identifiable, was a sub class Item.

8. Removed association to Property from both Item Scheme Map and Item.

9. Added attribute alias to both Item Scheme Association and Item Association.

10. Made Item Scheme Map and Item Association abstract.

11. Added sub-classes to Item Scheme Map – there is a subclass for each type of Item Scheme Association (e.g.
Code list Map).

12. Added mapping between Reporting Taxonomy as this is an Item Scheme and can be mapped in the same
way as other Item Schemes.

13. Added Hybrid Code list Map and Hybrid Code Map to support code mappings between a Code list and a
Hierarchical Code list.

Mapping: Structure Map

1. This is a new diagram. Essentially removed inherited /hierarchy association between the various maps, as
these no longer inherit from Item, and replaced the associations to the abstract Maintainable and Versionable
Artefact classes with the actual concrete classes.

2. Removed associations between Code list Map, Category Scheme Map, and Concept Scheme Map and made
this association to Item Scheme Map.

3. Removed hierarchy of Structure Map.

16 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Concept

1. Added association to Representation.

Data Structure Definition

1. Added Measure Dimension to support structure-specific renderings of the DSD. The Measure Dimension is
associated to a Concept Scheme that specifies the individual measures that are valid.

2. The three types of “Dimension”, - Dimension, Measure Dimension, Time Dimension – have a super class –
Dimension Component

3. Added association to a Concept that defines the role that the component (Dimension, Data Attribute, Mea-
sure Dimension) plays in the DSD. This replaces the Boolean attributes on the components.

4. Added Primary Measure and removed this as role of Measure.

5. Deleted the derived Data Structure Definition association from Data Structure Definition to itself as this is
not supported directly in DSD.

6. Deleted attribute GroupKeyDescriptor.isAttachmentConstraint and replaced with an association to an At-
tachment Constraint.

7. Replaced association from Data Attribute to Attachable Artefact with association to Attribute Relationship.

8. Added a set of classes to support Attribute Relationship.

9. Renamed KeyDescriptor to DimensionDescriptor to better reflect its purpose.

10. Renamed GroupKeyDescriptor to GroupDimensionDescriptor to better reflect its purpose.

Code list

1. CodeList classname changed to Codelist.

2. Removed codevalueLength from Codelist as this is supported by Facet.

3. Removed hierarchyView association between Code and Hierarchy as this association is not implemented.

Metadata Structure Definition(MSD)

1. Full Target Identifier, Partial Target Identifier, and Identifier Component are replaced by Metadata Target
and Target Object. Essentially this eliminates one level of specification and reference in the MSD, and so
makes the MSD more intuitive and easier to specify and to understand.

2. Re-named Identifiable Object Type to Identifiable Object Target and moved to the MSD package.

3. Added sub classes to Target Object as these are the actual types of object to which metadata can be attached.
These are Identifiable Object Target (allows reporting of metadata to any identifiable object), Key Descriptor
Values Target (allows reporting of metadata for a data series key, Data Set Target (allows reporting of
metadata to a data set), and Reporting Period Target (allows the metadata set to specify a reporting period).

4. Allowed Target Object can have any type of Representation, this was restricted in version 2.0 to an enumer-
ated representation in the model (but not in the schemas).

5. Removed Object Type Scheme (as users cannot maintain their own list of object types), and replaced with
an enumeration of Identifiable Objects.

6. Removed association between Metadata Attribute and Identifiable Artefact and replaced this with an asso-
ciation between Report Structure and Metadata Target, and allowed one Report Structure to reference more
than on Metadata Target. This allowing a single Report Structure to be defined for many object types.

7. Added the ability to specify that a Metadata Attribute can be repeated in a Metadata Set and that a Metadata
Attribute can be specified as “presentational” meaning that it is present for structural and presentational
purposes, and will not have content in a Metadata Set.

8. The Representation of a Metadata Attribute uses Extended Facet (to support Xhtml).

Metadata Set

1. Added link to Data Provider - 0..1 but note that for metadata set registration this will be 1.

1.2. Information Model 17

sdmx-im Documentation, Release 0.0.1

2. Removed Attribute Property as the underlying Property class has been removed.

3. One Metadata Set is restricted to reporting metadata for a single Report Structure.

4. The Metadata Report classes are re-structured and re-named to be consistent with the renaming and restruc-
turing of the MSD.

5. Metadata Attribute Value is renamed Reported Attribute to be consistent with the schemas.

6. Deleted XML attribute and Contact Details from the inheritance diagram.

Category Scheme

1. Added Categorisation. Category no longer has a direct association to Dataflow and Metadataflow.

2. Changed Reporting Taxonomy inheritance from Category Scheme to Maintainable Artefact.

3. Added Reporting Category and associated this to Structure Usage.

Data Set

1. Removed the association to Provision Agreement from the diagram.

2. Added association to Data Structure Definition. This association was implied via the dataflow but this is
optional in the implementation whereas the association to the Data Structure Definition is mandatory.

3. Added attributes to Data Set.

4. There is a single, unified, model of the Data Set which supports four types of data set:

• Generic Data Set – for reporting any type of data series, including time series and what is sometimes
known as “cross sectional data”. In this data set, the value of any one dimension (including the Time
Dimension) can be reported with the observation (this must be for the same dimension for the entire
data set)

• Structure-specific Data Set – for reporting a data series that is specific to a DSD

• Generic Time Series Data Set – this is identical to the Generic Data Set except it must contain only
time series, which means that a value for the Time Dimension is reported with the Observation

• Structure-specific Time Series Data Set - this is identical to the Structure-specific Data Set except it
must contain only time series, which means that a value for the Time Dimension is reported with the
Observation.

5. Removed Data Set as a sub class of Identifiable – but note that Data Set has a “setId” attribute.

6. Added coded and uncoded variants of Key Value, Observation, and Attribute Value in order to show the
relationship between the coded values in the data set and the Codelist in the Data Structure Definition.

7. Made Key Value abstract with sub classes for coded, uncoded, measure (MeasureKeyValue) ads
time(TimeKeyValue) The Measure Key Value is associated to a Concept as it must take its identify from a
Concept.

XSDataSet

1. This is removed and replaced with the single, unified data set model.

Constraint

1. Constraint is made Maintainable (was Identifiable).

2. Added artefacts that better support and distinguish (from data) the constraints for metadata.

3. Added Constraint Role to specify the purpose of the Constraint. The values are allowable content (for
validation of sub set code code lists), and actual content (to specify the content of a data or metadata
source).

Process

1. Removed inheritance from Item Scheme and Item: Process inherits directly from Maintainable and Process
Step from Identifiable.

2. Removed specialisation association between Transition and Association.

18 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

3. Removed Transition Scheme - transitions are explicitly specified and not maintained as Items in a Item
Scheme.

4. Removed Expression and replaced with Computation.

5. Transition is associated to Process Step and not Process itself. Therefore the source association to Process
Step is removed.

6. Removed Expressions as these are not implemented in the schemas. But note that the Transformations and
Expressions model is retained, though it is not implemented in the schemas.

Hierarchical Codelist

1. Renamed HierarchicalCodeList to HierarchicalCodelist.

2. This is re-modelled to reflect more accurately the way this is implemented: this is as an actual hierarchy
rather than a set of relational associations from which the hierarchy can be derived.

3. Code Association is re-named Hierarchical Code and the association type association to Code is removed
(as these association types are not maintained in an Item Scheme).

4. Hierarchical Code is made an aggregate of Hierarchy, and not of Hierarchical Codelist.

5. Removed root node in the Hierarchy – there can be many top-level codes in Hierarchical Code.

6. Added reference association between Hierarchical Code and Level to indicate the Level if the Hierarchy is
a level based hierarchy.

Provisioning and Registration

1. Data Provider and Provision Agreement have an association to Datasource (was Query Datasource), as the
association is to any of Query Datasource and Simple Datasource.

2. Provision Agreement is made Maintainable and indexing attributes moved to Registration

3. Registration has a registry assigned Id and indexing attributes.

1.2.2 Introduction

This document is not normative, but provides a detailed view of the information model on which the normative
SDMX specifications are based. Those new to the UML notation or to the concept of Data Structure Definitions
may wish to read the appendixes in this document as an introductory exercise.

Related Documents

This document is one of two documents concerned with the SDMX Information Model. The complete set of
documents is:

SDMX SECTION 02 INFORMATION MODEL: UML CONCEPTUAL DESIGN (this document)

This document comprises the complete definition of the information model, with the exception of the registry in-
terfaces. It is intended for technicians wishing to understand the complete scope of the SDMX technical standards
in a syntax neutral form.

SDMX SECTION 05 REGISTRY SPECIFICATION: LOGICAL INTERFACES

This document provides the logical specification for the registry interfaces, including subscription/notification,
registration/submission of data and metadata, and querying.

1.2. Information Model 19

sdmx-im Documentation, Release 0.0.1

Modelling Technique and Diagrammatic Notes

The modelling technique used for the SDMX Information Model (SDMX-IM) is the Unified Modelling Language
(UML). An overview of the constructs of UML that are used in the SDMX-IM can be found in the Appendix “A
Short Guide to UML in the SDMX Information Model”

UML diagramming allows a class to be shown with or without the compartments for one or both of attributes and
operations (sometimes called methods). In this document the operations compartment is not shown as there are
no operations.

Fig. 1.2: Class with operations suppressed

Fig. 1.3: Class with operations suppressed 2

In some diagrams for some classes the attribute compartment is suppressed even though there may be some
attributes. This is deliberate and is done to aid clarity of the diagram. The method used is:

• The attributes will always be present on the class diagram where the class is defined and its attributes and
associations are defined.

• On other diagrams, such as inheritance diagrams, the attributes may be suppressed from the class for clarity.

Figure 2 Class with attributes also suppressed

Note that, in any case, attributes inherited from a super class are not shown in the sub class.

The following table structure is used in the definition of the classes, attributes, and associations.

Class Feature Description
ClassName

attributeName .
associationName
+roleName

The content in the “Feature” column comprises or explains one of the following structural features of the class:

• Whether it is an abstract class. Abstract classes are shown in italic Courier font

• The superclass this class inherits from, if any

• The sub classes of this class, if any

• Attribute – the attributeName is shown in Courier font

20 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

• Association – the associationName is shown in Courier font. If the association is derived from the associa-
tion between super classes then the format is /associationName

• Role – the +roleName is shown in Courier font

The Description column provides a short definition or explanation of the Class or Feature. UML class names may
be used in the description and if so, they are presented in normal font with spaces between words. For example
the class ConceptScheme will be written as Concept Scheme.

Overall Functionality

Information Model Packages

The SDMX Information Model (SDMX-IM) is a conceptual metamodel from which syntax specific implementa-
tions are developed. The model is constructed as a set of functional packages which assist in the understanding,
re-use and maintenance of the model.

In addition to this, in order to aid understanding each package can be considered to be in one of three conceptual
layers:

• the SDMX Base layer comprises fundamental building blocks which are used by the Structural Definitions
layer and the Reporting and Dissemination layer

• the Structural Definitions layer comprises the definition of the structural artefacts needed to support data
and metadata reporting and dissemination

• the Reporting and Dissemination layer comprises the definition of the data and metadata containers used for
reporting and dissemination

In reality the layers have no implicit or explicit structural function as any package can make use of any construct
in another package.

Version 1.0

In version 1.0 the metamodel supported the requirements for:

• Data Structure Definition definition including (domain) category scheme, (metadata) concept scheme, and
code list

• Data and related metadata reporting and dissemination

The SDMX-IM comprises a number of packages. These packages act as convenient compartments for the various
sub models in the SDMX-IM. The diagram below shows the sub models of the SDMX-IM that were included in
the version 1.0 specification.

1.2. Information Model 21

sdmx-im Documentation, Release 0.0.1

Figure 3: SDMX Information Model Version 1.0 package structure

Version 2.0/2.1

The version 2.0/2.1 model extends the functionality of version 1.0. principally in the area of metadata, but also in
various ways to define structures to support data analysis by systems with knowledge of cube type structures such
as OLAP1 systems. The following major constructs have been added at version 2.0/2.1

• Metadata structure definition

• Metadata set

• Hierarchical Codelist

• Data and Metadata Provisioning

• Process

• Mapping

• Constraints

• Constructs supporting the Registry

Furthermore, the term Data Structure Definition replaces the term Key Family: as both of these terms are used
in various communities they are synonymous. The term Data Structure Definition is used in the model and this
document.

1 OLAP: On line analytical processing

22 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Figure 4 SDMX Information Model Version 2.0/2.1 package structure

Additional constructs that are specific to a registry based scenario can be found in the Specification of Registry
Interfaces. For information these are shown on the diagram below and comprise:

• Subscription and Notification

• Registration

• Discovery

Note that the data and metadata required for registry functions are not confined to the registry, and the registry
also makes use of the other packages in the Information Model.

Figure 5: SDMX Information Model Version 2.0/2.1 package structure including the registry

1.2.3 Actors and Use Cases

Introduction

In order to develop the data models it is necessary to understand the functions to be supported resulting from the
requirements definition. These are defined in a use case model. The use case model comprises actors and use
cases and these are defined below.

Actor

“An actor defines a coherent set of roles that users of the system can play when interacting with it. An actor
instance can be played by either an individual or an external system”

Use case

“A use case defines a set of use-case instances, where each instance is a sequence of actions a system performs
that yields an observable result of value to a particular actor”

The overall intent of the model is to support data and metadata reporting, dissemination, and exchange in the
field of aggregated statistical data and related metadata. In order to achieve this, the model needs to support three
fundamental aspects of this process:

• Maintenance of structural and provisioning definitions

• Data and reference metadata publishing (reporting), and consuming (using)

1.2. Information Model 23

sdmx-im Documentation, Release 0.0.1

• Access to data, reference metadata, and structural and provisioning definitions

This document covers the first two aspects, whilst the document on the Registry logical model covers the last
aspect.

Use Case Diagrams

Maintenance of Structural and Provisioning Definitions

Use cases

Figure 6 Use cases for maintaining data and metadata structural and provisioning definitions

Explanation of the Diagram

In order for applications to publish and consume data and reference metadata it is necessary for the structure
and permitted content of the data and reference metadata to be defined and made available to the applications,
as well as definitions that support the actual process of publishing and consuming. This is the responsibility of a
Maintenance Agency.

All maintained artefacts are maintained by a Maintenance Agency. For convenience the Maintenance Agency
actor is sub divided into two actor roles:

• maintaining structural definitions

• maintaining provisioning definitions

Whilst both these functions may be carried out by the same person, or at least by the same maintaining organi-
zation, the purpose of the definitions is different and so the roles have been differentiated: structural definitions
define the format and permitted content of data and reference metadata when reported or disseminated, whilst pro-
visioning definitions support the process of reporting and dissemination (who reports what to whom, and when).

In a community based scenario where at least the structural definitions may be shared, it is important that the
scheme of maintenance agencies is maintained by a responsible organization (called here the Community Admin-
istrator), as it is important that the Id of the Maintenance Agency is unique.

24 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

1.2. Information Model 25

sdmx-im Documentation, Release 0.0.1

Definitions

Ac-
tor

Use Case Description

Responsible organisation that administers
structural definitions common to the com-
munity as a whole.

Creation and maintenance of the top-level
scheme of maintenance agencies for the
Community.

Responsible agency for maintaining struc-
tural artefacts such as code lists, concept
schemes, Data Structure Definition struc-
tural definitions, metadata structure defini-
tions, data and metadata provisioning arte-
facts such as provision agreement, and sub-
maintenance agencies.
sub roles are:
Structural Definitions Maintenance Agency
Provisioning Definitions Maintenance
Agency

Responsible for maintaining structural defi-
nitions.

The maintenance of structural definitions.
This use case has sub class use cases for
each of the structural artefacts that are main-
tained.

Creation and maintenance of the Data
Structure Definition, Metadata Structure
Definition, and the supporting artefacts that
they use, such as code list and concepts
This includes Agency, Data Provider, Data
Consumer, and Organisation Unit Scheme

Responsible for maintaining data and meta-
data provisioning definitions.

The maintenance of provisioning defini-
tions.

26 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Figure 7: Table of Actors and Use Cases for Maintenance of Structural and Provisioning Definitions

Publishing and Using Data and Reference Metadata

Use Cases

Figure 8: Actors and use cases for data and metadata publishing and consuming

Explanation of the Diagram

Note that in this diagram “publishing” data and reference metadata is deemed to be the same as “reporting” data
and reference metadata. In some cases the act of making the data available fulfils both functions. Aggregated data
is published and in order for the Data Publisher to do this and in order for consuming applications to process the
data and reference metadata its structure must be known. Furthermore, consuming applications may also require
access to reference metadata in order to present this to the Data Consumer so that the data is better understood. As
with the data, the reference metadata also needs to be formatted in accordance with a maintained structure. The
Data Consumer and Metadata Consumer cannot use the data or reference metadata unless it is “published” and so
there is a “data source” or “metadata source” dependency between the “uses” and “publish” use cases.

In any data and reference metadata publishing and consuming scenario both the publishing and the consuming
applications will need access to maintained Provisioning Definitions. These definitions may be as simple as who
provides what data and reference metadata to whom, and when, or it can be more complex with constraints on the
data and metadata that can be provided by a particular publisher, and, in a data sharing scenario where data and
metadata are “pulled” from data sources, details of the source.

1.2. Information Model 27

sdmx-im Documentation, Release 0.0.1

Definitions

Actor Use Case Description

Responsible for publishing data according to a specified Data
Structure Definition (data structure) definition, and relevant pro-
visioning definitions.

Publish a data set. This could mean a physical data set or it could
mean to make the data available for access at a data source such
as a database that can process a query.

The user of the data. It may be a human consumer accessing via
a user interface, or it could be an application such as a statistical
production system.

Use data that is formatted according to the structural definitions
and made available according to the provisioning definitions.
Data are often linked to metadata that may reside in a different
location and be published and maintained independently.

Responsible for publishing reference metadata according to a
specified metadata structure definition, and relevant provisioning
definitions.

Publish a reference metadata set. This could mean a physical
metadata set or it could mean to make the reference metadata
available for access at a metadata source such as a metadata repos-
itory that can process a query.

The user of the reference metadata. It may be a human consumer
accessing via a user interface, or it could be an application such
as a statistical production or dissemination system.

Use reference metadata that is formatted according to the struc-
tural definitions and made available according to the provisioning
definitions.

1.2.4 SDMX Base Package

Introduction

The constructs in the SDMX Base package comprise the fundamental building blocks that support many of the
other structures in the model. For this reason, many of the classes in this package are abstract (i.e. only derived
sub-classes can exist in an implementation).

The motivation for establishing the SDMX Base package is as follows:

• it is accepted “Best Practise” to identify fundamental archetypes occurring in a model

• identification of commonly found structures or “patterns” leads to easier understanding

• identification of patterns encourages re-use

Each of the class diagrams in this section views classes from the SDMX Base package from a different per-
spective. There are detailed views of specific patterns, plus overviews showing inheritance between classes, and
relationships amongst classes.

28 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Base Structures - Identification, Versioning, and Maintenance

Class Diagram

Figure 9: SDMX Identification, Maintenance and Versioning

Explanation of the Diagram

Narrative

This group of classes forms the nucleus of the administration facets of SDMX objects. They provide features
which are reusable by derived classes to support horizontal functionality such as identity, versioning etc.

All classes derived from the abstract class AnnotableArtefact may have Annotations (or notes): this supports the
need to add notes to all SDMX-ML elements. The Annotation is used to convey extra information to describe any
SDMX construct. This information may be in the form of a URL reference and/or a multilingual text (represented
by the association to InternationalString).

The IdentifiableArtefact is an abstract class that comprises the basic attributes needed for identification. Concrete
classes based on IdentifiableArtefact all inherit the ability to be uniquely identified.

The NamableArtefact is an abstract class that inherits from IdentifiableArtefact and in addition the +description
and +name roles support multilingual descriptions and names for all objects based on NameableArtefact. The
InternationalString supports the representation of a description in multiple locales (locale is similar to language
but includes geographic variations such as Canadian French, US English etc.). The LocalisedString supports the
representation of a description in one locale.

1.2. Information Model 29

sdmx-im Documentation, Release 0.0.1

VersionableArtefact is an abstract class which inherits from NameableArtefact and adds versioning ability to all
classes derived from it.

MaintainableArtefact further adds the ability for derived classes to be maintained via its association to Agency,
and adds locational information (i.e. from where the object can be retrieved). It is possible to define whether the
artefact is draft or final with the final attribute.

The inheritance chain from AnnotableArtefact through to MaintainableArtefact allows SDMX classes to inherit
the features they need, from simple annotation, through identity, naming, to versioning and maintenance.

30 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
Anno-
tableArt-
efact

Base inheritance sub classes
are:
IdentifiableArtefact

Objects of classes derived from this can have attached annota-
tions.

Anno-
tation

Additional descriptive information attached to an object.

id Identifier for the Annotation. It can be used to disambiguate one
Annotation from another where there are several Annotations for
the same annotated object.

title A title used to identify an annotation.
type Specifies how the annotation is to be processed.
url A link to external descriptive text.
+text An International String provides the multilingual text content of

the annotation via this role.
Iden-
tifi-
ableArt-
efact

Superclass is AnnotableArte-
fact
Base inheritance sub classes
are:
NameableArtefact

Provides identity to all derived classes. It also provides anno-
tations to derived classes because it is a subclass of Annotable
Artefact.

id The unique identifier of the object.
uri Universal resource identifier that may or may not be resolvable.
urn Universal resource name – this is for use in registries: all regis-

tered objects have a urn.
Name-
ableArt-
efact

Superclass is IdentifiableArte-
fact
Base inheritance sub classes
are:
VersionableArtefact

Provides a Name and Description to all derived classes in addi-
tion to identification and annotations.

+description A multi-lingual description is provided by this role via the Inter-
national String class.

+name A multi-lingual name is provided by this role via the Interna-
tional String class

Inter-
na-
tional-
String

The International String is a collection of Localised Strings and
supports the representation of text in multiple locales.

Lo-
calised-
String

The Localised String supports the representation of text in one
locale (locale is similar to language but includes geographic vari-
ations such as Canadian French, US English etc.).

label Label of the string.
locale The geographic locale of the string e.g French, Canadian French.

Ver-
sion-
ableArt-
efact

Superclass is NameableArtefact
Base inheritance sub classes
are:
MaintainableArtefact

Provides versioning information for all derived objects.

version A version string following an agreed convention
validFrom Date from which the version is valid
validTo Date from which version is superceded

Main-
tain-
ableArt-
efact

Inherits from
VersionableArtefact

An abstract class to group together primary structural metadata
artefacts that are maintained by an Agency.

final Defines whether a maintained artefact is draft or final.
isExternalReference If set to “true” it indicates that the content of the object is held

externally.
structureURL The URL of an SDMX-ML document containing the external

object.
serviceURL The URL of an SDMX-compliant web service from which the

external object can be retrieved.
+maintainer Association to the Maintenance Agency responsible for main-

taining the artefact.
Agency See section on “Organisations”

1.2. Information Model 31

sdmx-im Documentation, Release 0.0.1

Basic Inheritance

Class Diagram– Basic Inheritance from the Base Inheritance Classes

32 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Figure 10: Basic Inheritance from the Base Structures

Explanation of the Diagram

Narrative

The diagram above shows the inheritance within the base structures. The concrete classes are introduced and
defined in the specific package to which they relate.

Data Types

1.2. Information Model 33

sdmx-im Documentation, Release 0.0.1

Class Diagram

Figure 11: Class Diagram of Basic Data Types

34 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Explanation of the Diagram

Narrative

The UsageStatus enumeration is used as a data type on a DataAttribute where the value of the attribute in an
instance of the class must take one of the values in the UsageStatus (i.e. mandatory, conditional).

The FacetType and FacetValueType enumerations are used to specify the valid format of the content of a non
enumerated Concept or the usage of a Concept when specified for use on a Component on a Structure (such as
a Dimension in a DataStructureDefinition). The description of the various types can be found in the section on
ConceptScheme (section 4.4).

The ActionType enumeration is used to specify the action that a receiving system should take when processing the
content that is the object of the action. It is enumerated as follows:

• Append

Data or metadata is an incremental update for an existing data/metadata set or the provision of new
data or documentation (attribute values) formerly absent. If any of the supplied data or metadata is
already present, it will not replace that data or metadata. This corresponds to the “Update” value
found in version 1.0 of the SDMX Technical Standards

• Replace

Data/metadata is to be replaced, and may also include additional data/metadata to be appended.

• Delete

Data/Metadata is to be deleted.

• Information

Data and metadata are for information purposes.

The IdentifiableObjectType enumeration is used to specify an object type whose class is a sub class of Identifi-
ableArtefact either directly of via NameableArtefact, VersionableArtefact or MaintainableArtefact.

The ToValueType data type contains the attributes to support transformations defined in the StructureMap (see
Section 9).

The ConstraintRoleType data type contains the attributes that identify the purpose of a Constraint (allowableCon-
tent, actualContent).

The Item Scheme Pattern

Context

The Item Scheme is a basic architectural pattern that allows the creation of list schemes for use in simple tax-
onomies, for example.

The ItemScheme is the basis for CategoryScheme, Codelist, ConceptScheme, ReportingTaxonomy, and Organi-
sationScheme.

1.2. Information Model 35

sdmx-im Documentation, Release 0.0.1

Class Diagram

Figure 12 The Item Scheme pattern

36 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Explanation of the Diagram

Narratve

The ItemScheme is an abstract class which defines a set of Item (this class is also abstract). Its main purpose is to
define a mechanism which can be used to create taxonomies which can classify other parts of the SDMX Infor-
mation Model. It is derived from MaintainableArtefact which gives it the ability to be annotated, have identity,
naming, versioning and be associated with an Agency. An example of a concrete class is a CategoryScheme. The
associated Category are Items.

In an exchange environment an ItemScheme is allowed to contain a sub-set of the Items in the maintained Item-
Scheme. If such an ItemScheme is disseminated with a sub-set of the Items then the fact that this is a sub-set is
denoted by setting the isPartial attribute to “true”.

A “partial” ItemScheme cannot be maintained independently in its partial form i.e. it cannot contain Items that are
not present in the full ItemScheme and the content of any one Item (e.g. names and descriptions) cannot deviate
from the content in the full ItemScheme. Furthermore, the Id of the ItemScheme where isPartial is set to “true”
is the same as the Id of the full ItemScheme (maintenance agency, id, version). This is important as this is the Id
that that is referenced in other structures (e.g. a Codelist referenced in a DSD) and this Id is always the same,
regardless of whether the disseminated ItemScheme is the full ItemScheme or a partial ItemScheme.

The purpose of a partial ItemScheme is to support the exchange and dissemination of a sub-set ItemScheme without
the need to maintain multiple ItemSchemes which contain the same Items. For instance when a Codelist is used in
a DataStructureDefinition it is sometimes the case that only a sub-set of the Codes in a Codelist are relevant. In
this case a partial Codelist can be constructed using the Constraint mechanism explained later in this document.

Item inherits from NameableArtefact which gives it the ability to be annotated and have identity, and therefore
has id, uri and urn attributes, a name and a description in the form of an InternationalString. Unlike the parent
ItemScheme, the Item itself is not a MaintainableArtefact and therefore cannot have an independent Agency (i.e.
it implicitly has the same agency as the ItemScheme).

The Item can be hierarchic and so one Item can have child Items. The restriction of the hierarchic association is
that a child Item can have only parent Item.

1.2. Information Model 37

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
ItemScheme Inherits from:

MaintainableArtefact
Direct sub classes are:

CategoryScheme
ConceptScheme
Codelist

ReportingTaxonomy
OrganisationScheme

The descriptive information for an
arrangement or division of objects
into groups based on character-
istics, which the objects have in
common.

isPartial Denotes whether the Item Scheme
contains a sub set of the full set of
Items in the maintained scheme.

items Association to the Items in the
scheme.

Item Inherits from:
NameableArtefact
Direct sub classes are

Category
Concept
Code
ReportingCategory
Organisation

The Item is an item of content in an
Item Scheme. This may be a node
in a taxonomy or ontology, a code
in a code list etc.
Node that at the conceptual level
the Organisation is not hierarchic

hierarchy This allows an Item optionally to
have one or more child Items.

The Structure Pattern

Context

The Structure Pattern is a basic architectural pattern which allows the specification of complex tabular structures
which are often found in statistical data (such as Data Structure Definition, and Metadata Structure Definition).
A Structure is a set of ordered lists. A pattern to underpin this tabular structure has been developed, so that
commonalities between these structure definitions can be supported by common software and common syntax
structures.

38 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Class Diagrams

Figure 13: The Structure Pattern

1.2. Information Model 39

sdmx-im Documentation, Release 0.0.1

Figure 14: Representation within the Structure Pattern

40 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Explanation of the Diagrams

Narrative

The Structure is an abstract class which contains a set of one or more ComponentList(s) (this class is also abstract).
An example of a concrete Structure is DataStructureDefinition.

The ComponentList is a list of one or more Component(s*)*. The ComponentList has several concrete descriptor
classes based on it: DimensionDescriptor, GroupDimensionDescriptor, MeasureDescriptor, and AttributeDescrip-
tor of the DataStructureDefinition and MetadataTarget, and ReportStructure of the MetaDataStructureDefinition.

The Component is contained in a ComponentList. The type of Component in a ComponentList is dependent on
the concrete class of the ComponentList as follows:

DimensionDescriptor: Dimension, Measure Dimension, Time Dimension

GroupDimensionDescriptor: Dimension, Measure Dimension, Time Dimension

MeasureDescriptor: PrimaryMeasure

AttributeDescriptor: Data Attribute

MetadataTarget: TargetObject and its sub classes

ReportStructure: MetadataAttribute

Each Component takes its semantic (and possibly also its representation) from a Concept in a ConceptScheme.
This is represented by the conceptIdentity association to Concept.

The Component may also have a localRepresentation, This allows a concrete class, such as Dimension, to specify
its representation which is local to the Structure in which it is contained (for Dimension this will be DataStruc-
tureDefinition), and thus overrides any coreRepresentation specified for the Concept.

The Representation can be enumerated or non-enumerated. The valid content of an enumerated representation
is specified either in an ItemScheme which can be one of ConceptScheme, Codelist, OrganisationScheme, Cate-
goryScheme, and ReportingTaxonomy. The valid content of a non-enumerated representation is specified as one
or more Facet (for example these may specify minimum and maximum values). For a MetadataAttribute this is
achieved by one of more Extended Facet which allows the additional representation of XHTML.

The types of representation that are valid for specific components is expressed in the model as a constraint on the
association viz:

• The MeasureDimension must be enumerated and use a ConceptScheme

• The Dimension (but not MeasureDimension), DataAttribute, PrimaryMeasure, MetadataAttribute may be
enumerated and, if so, use a Codelist

• The TargetObject may be enumerated and, if so, can use any ItemScheme (Codelist, ConceptScheme, Or-
ganisationScheme, CategoryScheme, ReportingTaxonomy)

• The Dimension (but not MeasureDimension), Data Attribute, PrimaryMeasure, TargetObject may be non-
enumerated and, if so, use one of more Facet, note that the FacetValueType applicable to the TimeDimension
is restricted to those that represent time

• The MetadataAttribute may be non-enumerated and, if so, uses one or more ExtendedFacet

The Structure may be used by one or more StructureUsage. An example of this in terms of concrete classes is
that a DataflowDefinition (sub class of StructureUsage) may use a particular DataStructureDefinition (sub class of
Structure), and similar constructs apply for the MetadataflowDefinition (link to MetadataStructureDefinition).

1.2. Information Model 41

sdmx-im Documentation, Release 0.0.1

42 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
StructureUsage Inherits from:

MaintainableArtefact
Sub classes are:

DataflowDefinition
MetadataflowDefinition

An artefact whose components are
described by a Structure. In con-
crete terms (sub-classes) an exam-
ple would be a Dataflow Definition
which is linked to a given struc-
ture – in this case the Data Struc-
ture Definition.

structure An association to a Structure spec-
ifying the structure of the artefact.

Structure Inherits from:
MaintainableArtefact
Sub classes are:

DataStructure
Definition
MetadataStructure Definition

Abstract specification of a list of
lists to define a complex tabular
structure. A concrete example of
this would be statistical concepts,
code lists, and their organisation in
a data or metadata structure def-
inition, defined by a centre insti-
tution, usually for the exchange
of statistical information with its
partners.

grouping A composite association to one or
more component lists.

ComponentList Inherits from:
IdentifiableArtefact
Sub classes are:

DimensionDescriptor
GroupDimension
Descriptor
MeasureDescriptor
AttributeDescriptor
MetadataTarget
ReportStructure

An abstract definition of a list of
components. A concrete example
is a Dimension Descriptor which
defines the list of Dimensions in a
Data Structure Definition.

components An aggregate association to one or
more components which make up
the list.

Component Inherits from:
IdentifiableArtefact
Sub classes are:

PrimaryMeasure DataAttribute
DimensionComponent
TargetObject
MetadataAttribute

A component is an abstract su-
per class used to define qualitative
and quantitative data and metadata
items that belong to a Component
List and hence a Structure. Com-
ponent is refined through its sub-
classes.

conceptIdentity Association to a Concept in a Con-
cept Scheme that identifies and de-
fines the semantic of the Compo-
nent

localRepresentation Association to the Representation
of the Component if this is differ-
ent from the coreRepresentation of
the Concept which the Component
uses (ConceptUsage)

Representation The allowable value or format for
Component or Concept

+enumerated Association to an enumerated list
that contains the allowable content
for the Component when reported
in a data or metadata set. The
type of enumerated list that is al-
lowed for any concrete Component
is shown in the constraints on the
association (e.g. Identifier Com-
ponent can have any of the sub
classes of Item Scheme, whereas
Measure Dimension must have a
Concept Scheme).

+nonEnumerated Association to a set of Facets that
define the allowable format for the
content of the Component when
reported in a data or metadata set.

Facet Defines the format for the content
of the Component when reported
in a data or metadata set.

facetType A specific content type which is
constrained by the FacetType enu-
meration

facetValueType The format of the value of a Com-
ponent when reported in a data or
metadata set. This is contrained by
the FacetValueType enumeration.

+itemSchemeFacet Defines the format of the identi-
fiers in an Item Scheme used by a
Component. Typically this would
define the number of characters
(length) of the identifier.

ExtendedFacet This has the same function as
Facet but allows additionally an
XHTML representation. This is
constrained for use with a Meta-
data Attribute

1.2. Information Model 43

sdmx-im Documentation, Release 0.0.1

The specification of the content and use of the sub classes to ComponentList and Component can be found in the
section in which they are used (DataStructureDefinition and MetadataStructureDefinition)

Representation Constructs

The majority of SDMX FacetValueTypes are compatible with those found in XML Schema, and have equivalents
in most current implementation platforms:

SDMX Facet Value
Type

XML Schema Data
Type

.NET Framework
Type

Java Data Type

String xsd:string System.String java.lang.String
Big Integer xsd:integer System.Decimal java.math.BigInteger
Integer xsd:int System.Int32 int
Long xsd.long System.Int64 long
Short xsd:short System.Int16 short
Decimal xsd:decimal System.Decimal java.math.BigDecimal
Float xsd:float System.Single float
Double xsd:double System.Double double
Boolean xsd:boolean System.Boolean boolean
URI xsd:anyURI System.Uri Java.net.URI or java.lang.String
DateTime xsd:dateTime System.DateTime javax.xml.datatype.XMLGregorianCalendar
Time xsd:time System.DateTime javax.xml.datatype.XMLGregorianCalendar
GregorianYear xsd:gYear System.DateTime javax.xml.datatype.XMLGregorianCalendar
GregorianMonth xsd:gYearMonth System.DateTime javax.xml.datatype.XMLGregorianCalendar
GregorianDay xsd:date System.DateTime javax.xml.datatype.XMLGregorianCalendar
Day, MonthDay,
Month

xsd:g* System.DateTime javax.xml.datatype.XMLGregorianCalendar

Duration xsd:duration System.TimeSpan javax.xml.datatype.Duration

There are also a number of SDMX data types which do not have these direct correspondences, often because
they are composite representations or restrictions of a broader data type. These are detailed in Section 6 of the
standards.

The Representation is composed of Facets, each of which conveys characteristic information related to the defini-
tion of a value domain. Often a set of Facets are needed to convey the required semantic. For example, a sequence
is defined by a minimum of two Facets: one to define the start value, and one to define the interval.

44 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Facet
Type

Explanation

is-
Se-
quence

The isSequence facet indicates whether the values are intended to be ordered, and it may work in com-
bination with the interval, startValue, and endValue facet or the timeInterval, startTime, and endTime,
facets. If this attribute holds a value of true, a start value or time and a numeric or time interval must
supplied. If an end value is not given, then the sequence continues indefinitely.

in-
ter-
val

The interval attribute specifies the permitted interval (increment) in a sequence. In order for this to be
used, the isSequence attribute must have a value of true.

start-
Value

The startValue facet is used in conjunction with the isSequence and interval facets (which must be set in
order to use this facet). This facet is used for a numeric sequence, and indicates the starting point of the
sequence. This value is mandatory for a numeric sequence to be expressed.

end-
Value

The endValue facet is used in conjunction with the isSequence and interval facets (which must be set
in order to use this facet). This facet is used for a numeric sequence, and indicates that ending point (if
any) of the sequence.

timeIn-
ter-
val

The timeInterval facet indicates the permitted duration in a time sequence. In order for this to be used,
the isSequence facet must have a value of true.

start-
Time

The startTime facet is used in conjunction with the isSequence and timeInterval facets (which must be
set in order to use this facet). This attribute is used for a time sequence, and indicates the start time of
the sequence. This value is mandatory for a time sequence to be expressed.

end-
Time

The endTime facet is used in conjunction with the isSequence and timeInterval facets (which must be
set in order to use this facet). This facet is used for a time sequence, and indicates that ending point (if
any) of the sequence.

min-
Length

The minLength facet specifies the minimum and length of the value in characters.

maxLengthThe maxLength facet specifies the maximum length of the value in characters.
min-
Value

The minValue facet is used for inclusive and exclusive ranges, indicating what the lower bound of the
range is. If this is used with an inclusive range, a valid value will be greater than or equal to the value
specified here. If the inclusive and exclusive data type is not specified (e.g. this facet is used with an
integer data type), the value is assumed to be inclusive.

max-
Value

The maxValue facet is used for inclusive and exclusive ranges, indicating what the upper bound of the
range is. If this is used with an inclusive range, a valid value will be less than or equal to the value
specified here. If the inclusive and exclusive data type is not specified (e.g. this facet is used with an
integer data type), the value is assumed to be inclusive.

dec-
i-
mals

The decimals facet indicates the number of characters allowed after the decimal separator.

pat-
tern

The pattern attribute holds any regular expression permitted in the implementation syntax (e.g. W3C
XML Schema).

1.2.5 Specific Item Schemes

Introduction

The structures that are an arrangement of objects into hierarchies or lists based on characteristics, and which are
maintained as a group inherit from ItemScheme. These concrete classes are:

• Codelist

• ConceptScheme

• CategoryScheme

• AgencyScheme, DataProviderScheme, DataConsumerScheme, OrganisationUnitScheme which all inherit
from the abstract class OrganisationScheme

• Reporting Taxonomy

1.2. Information Model 45

sdmx-im Documentation, Release 0.0.1

Inheritance View

The inheritance and relationship views are shown together in each of the diagrams in the specific sections below.

Codelist

Class Diagram

Figure 15 Class diagram of the Codelist

46 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Explanation of the Diagram

Narrative

The Codelist inherits from the ItemScheme and therefore has the following attributes:

• id

• uri

• urn

• version

• validFrom

• validTo

• isExternalReference

• serviceURL

• structureURL

• final

• isPartial

The Code inherits from Item and has the following attributes:

• id

• uri

• urn

Both Codelist and Code have the association to InternationalString to support a multi-lingual name, an optional
multi-lingual description, and an association to Annotation to support notes (not shown).

Through the inheritance the Codelist comprise one or more Codes, and the Code itself can have one or more
child Codes in the (inherited) hierarchy association. Note that a child Code can have only one parent Code in
this association. A more complex HierachicalCodelist which allow multiple parents and multiple hierarchies is
described later.

A partial Codelist (where isPartial is set to “true”) is identical to a Codelist and contains the Code and associated
names and descriptions, just as in a normal code list. However, its content is a sub set of the full Codelist. The
way this works is described in section 3.5.3.1 on ItemScheme.

Definitions

Class Feature Description
CodelistInherits from

ItemScheme
A list from which some statistical concepts (coded concepts) take their values.

Code Inherits from
Item

A language independent set of letters, numbers or symbols that represent a concept
whose meaning is described in a natural language.

/hierarchy Associates the parent and the child codes.

1.2. Information Model 47

sdmx-im Documentation, Release 0.0.1

Concept Scheme and Concepts

Class Diagram - Inheritance

Figure 16 Class diagram of the Concept Scheme

Explanation of the Diagram

The ConceptScheme inherits from the ItemScheme and therefore has the following attributes:

• id

• uri

• urn

• version

• validFrom

• validTo

48 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

• isExternalReference

• registryURL

• structureURL

• repositoryURL

• final

• isPartial

Concept inherits from Item and has the following attributes:

• id

• uri

• urn

Through the inheritance from NameableArtefact both ConceptScheme and Concept have the association to In-
ternationalString to support a multi-lingual name, an optional multi-lingual description, and an association to
Annotation to support notes (not shown).

Through the inheritance from ItemScheme the ConceptScheme comprise one or more Concepts, and the Concept
itself can have one or more child Concepts in the (inherited) hierarchy association. Note that a child Concept can
have only one parent Concept in this association.

A partial ConceptScheme (where isPartial is set to “true”) is identical to a ConceptScheme and contains the
Concept and associated names and descriptions, just as in a normal ConceptScheme. However, its content is a sub
set of the full ConceptScheme. The way this works is described in section 3.5.3.1 on ItemScheme.

Class Diagram - Relationship

Figure 17: Relationship class diagram of the Concept Scheme

1.2. Information Model 49

sdmx-im Documentation, Release 0.0.1

Explanation of the diagram

Narrative

The ConceptScheme can have one or more Concepts. A Concept can have zero or more child Concepts, thus
supporting a hierarchy of Concepts. Note that a child Concept can have only one parent Concept in this associa-
tion. The purpose of the hierarchy is to relate concepts that have a semantic relationship: for example a Report-
ing_Country and Vis_a_Vis_Country may both have Country as a parent concept, or a CONTACT may have a
PRIMARY_CONTACT as a child concept. It is not the purpose of such schemes to define reporting structures:
these reporting structures are defined in the MetadataStructureDefinition.

The Concept can be associated with a coreRepresentation. The coreRepresentation is the specification of the
format and value domain of the Concept when used on a structure like a DataStructureDefinition or a MetadataS-
tructureDefinition, unless the specification of the Representation is overridden in the relevant structure definition.
In a hierarchical ConceptScheme the Representation is inherited from the parent Concept unless overridden at the
level of the child Concept.

Note that the ConceptScheme is used as the Representation of the MeasureDimension in a DataStructureDef-
inition (see 5.3.2). Each Concept in this ConceptScheme is a specific measure, each of which can be given a
coreRepresentation. Thus the valid format of the observation for each measure when reported in a data set for the
MeasureDimension is specified in the Concept. This allows a different format for each measure. This is covered
in more detail in 5.3.

The Representation is documented in more detail in the section on the SDMX Base.

The Concept may be related to a concept described in terms of the ISO/IEC 11179 standard. The ISOConceptRe-
ference identifies this concept and concept scheme in which it is contained.

Definitions

Class Feature Description
Con-
ceptScheme

Inherits from
ItemScheme

The descriptive information for an arrangement or division of concepts into
groups based on characteristics, which the objects have in common.

Concept Inherits from
Item

A concept is a unit of knowledge created by a unique combination of charac-
teristics.

/hierarchy Associates the parent and the child concept.
coreRepre-
sentation

Associates a Representation.

+ISOConcept Association to an ISO concept reference.
ISOCon-
ceptRefer-
ence

The identity of an ISO concept definition.

conceptA-
gency

The maintenance agency of the concept scheme containing the concept.

con-
ceptSchemeID

The identifier of the concept scheme.

conceptID The identifier of the concept.

50 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Category Scheme

Context

This package defines the structure that supports the definition of and relationships between categories in a category
scheme. It is similar to the package for concept scheme. An example of a category scheme is one which categorises
data – sometimes known as a subject matter domain scheme or a data category scheme. Importantly, as will be
seen later, the individual nodes in the scheme (the “categories”) can be associated to any set of IdentiableArtefacts
in a Categorisation.

Class diagram - Inheritance

1.2. Information Model 51

sdmx-im Documentation, Release 0.0.1

Figure 18 Inheritance Class diagram of the Category Scheme

Explanation of the Diagram

Narrative

The categories are modelled as a hierarchical ItemScheme. The CategoryScheme inherits from the ItemScheme
and has the following attributes:

• id

• uri

• urn

• version

• validFrom

• validTo

• isExternalReference

• structureURL

• serviceURL

• final

• isPartial

Category inherits from Item and has the following attributes:

• id

• uri

• urn

Both CategoryScheme and Category have the association to InternationalString to support a multi-lingual name,
an optional multi-lingual description, and an association to Annotation to support notes (not shown on the model).

Through the inheritance the CategoryScheme comprise one or more Categorys, and the Category itself can have
one or more child Category in the (inherited) hierarchy association. Note that a child Category can have only one
parent Category in this association.

A partial CategoryScheme (where isPartial is set to “true”) is identical to a CategoryScheme and contains the
Category and associated names and descriptions, just as in a normal CategoryScheme. However, its content is a
sub set of the full CategoryScheme. The way this works is described in section 3.5.3.1 on ItemScheme.

52 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Class diagram - Relationship

Figure 19: Relationship Class diagram of the Category Scheme

The CategoryScheme can have one or more Categorys. The Category is Identifiable and has identity information.
A Category can have zero or more child Categorys, thus supporting a hierarchy of Categorys. Any IdentifiableArt-
efact can be +categorisedBy a Category. This is achieved by means of a Categorisation. Each Categorisation can
associate one IdentifiableArtefact with one Category. Multiple Categorisations can be used to build a set of Iden-
tifiableArtefacts that are +categorisedBy the same Category. Note that there is no navigation (i.e. no embedded
reference) to the Categorisation from the Category. From an implementation perspective this is necessary as
Categorisation has no affect on the versioning of either the Category or the IdentifiableArtefact.

Definitions

Class Feature Description
Catego-
ryScheme

Inherits from
ItemScheme

The descriptive information for an arrangement or division of categories into
groups based on characteristics, which the objects have in common.

/items Associates the categories.
Cate-
gory

Inherits from
Item

An item at any level within a classification, typically tabulation categories, sec-
tions, subsections, divisions, subdivisions, groups, subgroups, classes and sub-
classes.

/hierarchy Associates the parent and the child Category.
Cate-
gorisa-
tion

Inherits from
Maintain-
ableArtefact

Associates an IdentifableArtefact with a Category.

+cate-
gorisedArtefact

Associates the IdentifableArtefact.

+categorisedBy Associates the Category.

1.2. Information Model 53

sdmx-im Documentation, Release 0.0.1

Organisation Scheme

Class Diagram

Figure 20 The Organisation Scheme class diagram

Explanation of the Diagram

Narrative

The OrganisationScheme is abstract. It contains Organisation which is also abstract. The Organisation can have
child Organisation.

The OrganisationScheme can be one of four types:

1. AgencyScheme – contains Agency which is restricted to a flat list of agencies (i.e. there is no hierarchy).
Note that the SDMX system of (Maintenance) Agency can be hierarchic and this is explained in more detail
in the separate document “Technical Notes”.

2. DataProviderScheme – contains DataProvider which is restricted to a flat list of agencies (i.e. there is no
hierarchy).

3. DataConsumerScheme – contains DataConsumer which is restricted to a flat list of agencies (i.e. there is no
hierarchy).

4. OrganisationUnitScheme – contains OrganisationUnit which does inherit the /hierarchy association from
Organisation.

54 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Reference metadata can be attached to the Organisation by means of the metadata attachment mechanism. This
mechanism is explained in the Reference Metadata section of this document (see section 7). This means that
the model does not specify the specific reference metadata that can be attached to a DataProvider, DataCon-
sumer,OrganisationUnit or Agency, except for limited Contact information.

A partial OrganisationScheme (where isPartial is set to “true”) is identical to a OrganisationScheme and con-
tains the Organisation and associated names and descriptions, just as in a normal OrganisationScheme However,
its content is a sub set of the full OrganisationScheme. The way this works is described in section 3.5.3.1 on
ItemScheme.

1.2. Information Model 55

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
Or-
gan-
isa-
tion-
Scheme

Abstract Class
Inherits from
ItemScheme
Sub classes are:
AgencyScheme DataProviderScheme
DataConsumerScheme Organisatio-
nUnitScheme

A maintained collection of Organisations.

/items Association to the Organisations in the scheme.
Or-
gani-
sation

Inherits from
Item
Sub classes are:
Agency DataProvider DataConsumer
OrganisationUnit

An organisation is a unique framework of authority within
which a person or persons act, or are designated to act,
towards some purpose.

+contact Association to the Contact information.
/hierarchy Association to child Organisations.

Con-
tact

An instance of a role of an individual or an organization
(or organization part or organization person) to whom an
information item(s), a material object(s) and/or person(s)
can be sent to or from in a specified context.

name The designation of the Contact person by a linguistic ex-
pression.

organisationUnit The designation of the organisational structure by a lin-
guistic expression, within which Contact person works.

responsibility The function of the contact person with respect to the or-
ganisation role for which this person is the Contact.

telephone The telephone number of the Contact.
fax The fax number of the Contact.
email The Internet e-mail address of the Contact.
X400 The X400 address of the Contact.
uri The URL address of the Contact.

Agen-
cyScheme

A maintained collection of Maintenace Agencies.

/items Association to the Maintenance Agency in the scheme.
Dat-
aProvider-
Scheme

A maintained collection of Data Providers.

/items Association to the Data Providers in the scheme.
Data-
Con-
sumer-
Scheme

A maintained collection of Data Consumers.

/items Association to the Data Consumers in the scheme.
Or-
gani-
satio-
nUnitScheme

A maintained collection of Organisation Units.

/items Association to the Organisation Units in the scheme.
Agency Inherits from

Organisation
Responsible agency for maintaining artefacts such as sta-
tistical classifications, glossaries, structural metadata such
as Data and Metadata Structure Definitions, Concepts and
Code lists.

Dat-
aProvider

Inherits from
Organisation

An organisation that produces data or reference metadata.

Data-
Con-
sumer

Inherits from
Organisation

An organisation using data as input for further processing.

Or-
gani-
satio-
nUnit

Inherits from
Organisation

A designation in the organisational structure.

/hierarchy Association to child Organisation Units

56 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Reporting Taxonomy

Class Diagram

Figure 21: Class diagram of the Reporting Taxonomy

Explanation of the Diagram

Narrative

In some data reporting environments, and in particular those in primary reporting, a report may comprise a variety
of heterogeneous data, each described by a different Structure. Equally, a specific disseminated or published report
may also comprise a variety of heterogeneous data. The definition of the set of linked sub reports is supported by
the ReportingTaxonomy.

The ReportingTaxonomy is a specialised form of ItemScheme. Each ReportingCategory of the ReportingTaxon-
omy can link to one or more StructureUsage which itself can be one of DataflowDefinition, or MetadataflowDefi-
nition, and one or more Structure, which itself can be one of DataStructureDefinition or MetadataStructureDefini-
tion. It is expected that within a specific ReportingTaxonomy each Category that is linked in this way will be linked

1.2. Information Model 57

sdmx-im Documentation, Release 0.0.1

to the same class (e.g. all Category in the scheme will link to a DataflowDefinition). Note that a ReportingCate-
gory can have child ReportingCategory and in this way it is possible to define a hierarchical ReportingTaxonomy.
It is possible in this taxonomy that some ReportingCategory are defined just to give a reporting structure. For
instance:

Section 1

1. linked to DatafowDefinition_1

2 linked to DatafowDefinition_2

Section 2

1 linked toDatafowDefinition_3

2 linked to DatafowDefinition_4

Here, the nodes of Section 1 and Section 2 would not be linked to DataflowDefinition but the other would be
linked to a DataflowDefinition (and hence the DataStructureDefinition).

A partial ReportingTaxonomy (where isPartial is set to “true”) is identical to a ReportingTaxonomy and contains
the ReportingCategory and associated names and descriptions, just as in a normal ReportingTaxonomy However,
its content is a sub set of the full ReportingTaxonomy The way this works is described in section 3.5.3.1 on
ItemScheme.

Definitions

Class Feature Description
Report-
ingTax-
onomy

Inherits
from
Item-
Scheme

A scheme which defines the composition structure of a data report where each com-
ponent can be described by an independent Dataflow Definition or Metdataflow Def-
inition.

items Associates the Reporting Category
Report-
ingCate-
gory

Inherits
from
Item

A component that gives structure to the report and links to data and metadata.

hierarchy Associates child Reporting Category.
+flow Association to the data and metadata flows that link to metadata about the provision-

ing and related data and metadata sets, and the structures that define them.
+structure Association to the Data Structure Definition and Metadata Structure Definitions

which define the structural metadata describing the data and metadata that are con-
tained at this part of the report.

1.2.6 Data Structure Definition and Dataset

Introduction

The DataStructureDefiniton is the class name for a structure definition for data. Some organisations know this
type of definition as a “Key Family” and so the two names are synonymous. The term Data Structure Definition
(also referred to as DSD) is used in this specification.

Many of the constructs in this layer of the model inherit from the SDMX Base Layer. Therefore, it is necessary
to study both the inheritance and the relationship diagrams to understand the functionality of individual packages.
In simple sub models these are shown in the same diagram, but are omitted from the more complex sub models
for the sake of clarity. In these cases, the inheritance diagram below shows the full inheritance tree for the classes
concerned with data structure definitions.

There are very few additional classes in this sub model other than those shown in the inheritance diagram below.
In other words, the SDMX Base gives most of the structure of this sub model both in terms of associations and
in terms of attributes. The relationship diagrams shown in this section show clearly when these associations are

58 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

inherited from the SDMX Base (see the Appendix “A Short Guide to UML in the SDMX Information Model” to
see the diagrammatic notation used to depict this).

The actual SDMX Base construct from which the concrete classes inherit depends upon the requirements of the
class for:

• Annotation - AnnotableArtefact

• Identification - IdentifiableArtefact

• Naming - NameableArtefact

• Versioning – VersionableArtefact

• Maintenance - MaintainableArtefact

Inheritance View

1.2. Information Model 59

sdmx-im Documentation, Release 0.0.1

Class Diagram

Figure 22 Class inheritance in the Data Structure Definition and Data Set Packages

60 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Explanation of the Diagram

Narrative

Those classes in the SDMX metamodel which require annotations inherit from AnnotableArtefact . These are:

• IdentifiableArtefact

• DataSet (and therefore StructureSpecificDataSet, GenericDataSet, GenericTimeSeriesDataSet Structure-
SpecificTimeSeriesDataSet)

• Key (and therefore SeriesKey and GroupKey)

Those classes in the SDMX metamodel which require annotations and global identity are derived from Identifi-
ableArtefact . These are:

• NameableArtefact

• ComponentList

• Component

Those classes in the SDMX metamodel which require annotations, global identity, multilingual name and multi-
lingual description are derived from NameableArtefact . These are:

• VersionableArtefact

• Item

The classes in the SDMX metamodel which require annotations, global identity, multilingual name and multilin-
gual description, and versioning are derived from VersionableArtefact . These are:

• MaintainableArtefact

Abstract classes which represent information that is maintained by Maintenance Agencies all inherit from Main-
tainableArtefact, they also inherit all the features of a VersionableArtefact, and are:

• StructureUsage

• Structure

• ItemScheme

All the above classes are abstract. The key to understanding the class diagrams presented in this section are the
concrete classes that inherit from these abstract classes.

Those concrete classes in the SDMX Data Structure Definition and Dataset packages of the metamodel which
require to be maintained by Agencies all inherit (via other abstract classes) from MaintainableArtefact, these are:

• DataflowDefinition

• DataStructureDefinition

The component structures that are lists of lists, inherit directly from Structure. A Structure contains several lists
of components. The concrete class that inherits from Structure is:

• DataStructureDefinition

A DataStructureDefinition contains a list of dimensions, a list of measures and a list of attributes.

The concrete classes which inherit from ComponentList and are sub components of the DataStructureDefinition
are:

• DimensionDescriptor – content is Dimension, MeasureDimension and Time Dimension

• DimensionGroupDescriptor – content is an association to Dimension, MeasureDimension, TimeDimension

• MeasureDescriptor – content is PrimaryMeasure

• AttributeDescriptor – content is DataAttribute

The classes that inherit from Component are:

1.2. Information Model 61

sdmx-im Documentation, Release 0.0.1

• PrimaryMeasure

• DimensionComponent and thereby its sub classes of Dimension, MeasureDimension, and TimeDimension

• DataAttribute

The class that inherit from DataAttribute is:

• ReportingYearStartDay

The concrete classes identified above are the majority of the classes required to define the metamodel for the
DataStructureDefinition. The diagrams and explanations in the rest of this section show how these concrete
classes are related in order to support the functionality required.

Data Structure Definition – Relationship View

Class Diagram

Figure 23 Relationship class diagram of the Data Structure Definition excluding representation

62 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Explanation of the Diagrams

Narrative

A DataStructureDefinition defines the Dimensions, MeasureDimension, TimeDimension, DataAttributes, and Pri-
maryMeasure, and associated Representation that comprise the valid structure of data and related attributes that
are contained in a DataSet, which is defined by a DataflowDefinition.

The DataflowDefinition may also have additional metadata attached that defines qualitative information and Con-
straints on the use of the DataStructureDefinition such as the sub set of Codes used in a Dimension (this is
covered later in this document – see “Data Constraints and Provisioning” section 9). Each DataflowDefinition
has a maximum of one DataStructureDefinition specified which defines the structure of any DataSets to be re-
ported/disseminated.

There are three types of dimension each having a common association to Concept:

• Dimension

• MeasureDimension

• TimeDimension

Note that In the description here DimensionComponent can be oany or all of its sub classes i.e. Dimension,
MeasureDimension, TimeDimension., and the term “DataAttribute” refers to both DataAttribute and its sub class
ReportingYearStartDate.

The DimensionComponent, DataAttribute, and PrimaryMeasure link to the Concept that defines its name and
semantic (/conceptIdentity association to Concept). The DataAttribute, Dimension, and MeasureDimension (but
not TimeDimension) can optionally have a +conceptRole association with a Concept that identifies its role in
the DataStructureDefinition. Therefore, the allowable roles of a Concept are maintained in a ConceptScheme.
Examples of roles are: geography, entity, count, unit of measure. The use of these roles is to enable applications
to process the data in a meaningful way (e.g. relating a dimension value to a mapping vector). It is expected that
communities (such as the official statistics community) will harmonise these roles with their community so that
data can be exchanged and shared in a meaningful way in the community.

The valid values for a DimensionComponent, PrimaryMeasure, or DataAttribute, when used in this DataStructure-
Definition, are defined by the Representation. This Representation is taken from the Concept definition (coreRep-
resentation) unless it is overridden in this DataStructureDefinition (localRepresentation) – see Figure 23. Note
that for the MeasureDimension the Representation must be a ConceptScheme and this must always be referenced
from the MeasureDimension and cannot therefore be defaulted to the Representation of the Concept associated
by the/conceptIdentity. Note also that TimeDimension and ReportingYearStartDate are constrained to specific
FacetValueTypes

There will always be a DimensionDescriptor grouping that identifies all of the Dimension comprising the full key.
Together the Dimensions specify the key of an Observation.

The DimensionComponent can optionally be grouped by multiple GroupDimensionDescriptors each of which
identifies the group of Dimensions that can form a partial key. The GroupDimensionDescriptor must be identified
(GroupDimensionDescriptor.id) and this is used in the GroupKey of the DataSet to declare which DataAttributes
are reported at this group level in the DataSet.

There may be a maximum of one MeasureDimension specified in the DimensionDescriptor. The purpose of a
MeasureDimension is to specify formally the meaning of the measures (because the PrimaryMeasure typically
has a generic meaning e.g. observation value) and to enable multiple measures to be defined and reported in a
StructureSpecificDataSet. Note that the MeasureDimension references a ConceptScheme as its Representation
(see later) whereas a Dimension can have either an enumerated (Codelis*t*) or non-enumerated (Facet) represen-
tation. For a MeasureDimension the Concepts in the ConceptScheme comprise the list of allowable measures.
This enables the representation for each individual measure (Concept) to be declared as the coreRepresentation of
the Concept, thus overriding the Representation specified for the PrimaryMeasure for the observation value of this
MeasureDimension Concept.

There can be a maximum of one TimeDimension specified in the DimensionDescriptor. The TimeDimension is
used to specify the Concept used to convey the time period of the observation in a data set. The TimeDimension

1.2. Information Model 63

sdmx-im Documentation, Release 0.0.1

must contain a valid representation of time and cannot be coded

The PrimaryMeasure is the observable phenomenon, and, although there can be only one PrimaryMeasure, for
consistency with the ComponentList/Component pattern it is grouped by a MeasureDescriptor.

The DataAttribute defines a characteristic of data that are collected or disseminated and is grouped in the DataS-
tructureDefinition by a single AttributeDescriptor. The DataAttribute can be specified as being mandatory, or
conditional, as defined in usageStatus. The DataAttribute may play a specific role in the structure and this is
specified by the +role association to the Concept that identifies its role.

A DataAttribute is specified as being +relatedTo an AttributeRelationship which defines the constructs to which
the DataAttribute is to be reported present in a DataSet. The DataAttribute can be specified as being related to
one of the following artefacts:

• DataSet (NoSpecifiedRelationship)

• Dimension or set of Dimensions (DimensionRelationship)

• Set of Dimensions specified by a GroupKey (GroupRelationship – this is retained for compatibility reasons
– or +groupKey of the DimensionRelationship)

• Observation (PrimaryMeasureRelationship)

Figure 24: Attribute Attachment Defined in the Data Structure Definition

The following table details the possible relationships a DataAttribute may specify. Note that these relationships
are mutually exclusive, and therefore only one of the following is possible.

64 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Re-
la-
tion-
ship

Meaning Location in Data Set at which
the Attribute is reported

None The value of the attribute does not vary with the values of any
other Component.

The attribute is reported at the level
of the Dataset Attribute.

Di-
men-
sion
(1..n)

The value of the attribute will vary with the value(s) of the ref-
erenced Dimension(s). In this case, Group(s) to which the at-
tribute should be attached may optionally be specified.

The attribute is reported at the low-
est level of the Dimension to which
the Attribute is related, otherwise at
the level of the Group if Attachment
Group(s) is specified.

Group The value of the Attribute varies with combination of values for
all of the Dimensions contained in the Group. This is added as a
convenience to listing all Dimensions and the attachment Group,
but should only be used when the Attribute value varies based
on all Group Dimension values.

The attribute is reported at the level
of Group.

Pri-
mary
Mea-
sure

The value of the Attribute varies with the observed value. The attribute is reported at the level
of Observation.

1.2. Information Model 65

sdmx-im Documentation, Release 0.0.1

66 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Figure 25: Representation of DSD Components

Each of Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, and DataAttribute can have a Repre-
sentation specified (using the localRepresentation association). If this is not specified in the DataStructureDefi-
nition then the representation specified for Concept (coreRepresentation) is used. For the MeasureDimension the
representation for the individual measures is specified for the Concept in the ConceptScheme referenced by the
MeasureDimension.

A DataStructureDefinition can be extended to form a derived DataStructureDefinition. This is supported in the
StructureMap.

Definitions

Table 1.1: The general table 1
Class Feature Description
StructureUsage See “SDMX Base”.
DataflowDefinition Inherits from

StructureUsage
Abstract concept (i.e. the structure without any data) of a flow of
data that providers will provide for different reference periods.

DataStructureDefinition A collection of metadata concepts, their structure and usage when
used to collect or disseminate data.

/grouping An association to a set of metadata concepts that have an identi-
fied structural role in a Data Structure Definition.

GroupDimensionDescriptorInherits from Com-
ponentList

A set metadata concepts that define a partial key derived from the
Dimension Descriptor in a Data Structure Definition.

+constraint Identifies an Attachment Constraint that specifies the sub set of
Dimension, Measure, or Attribute values to which an Attribute
can be attached.

/components An association to the Dimension and Measure Dimension com-
ponents that comprise the group.

DimensionDescriptor Inherits from Com-
ponentList

An ordered set of metadata concepts that, combined, classify a
statistical series, and whose values, when combined (the key) in
an instance such as a data set, uniquely identify a specific obser-
vation.

/components An association to the Dimension, Measure Dimension, and Time
Dimension comprising the Key Descriptor.

AttributeDescriptor Inherits from Com-
ponentList

A set metadata concepts that define the attributes of a Data Struc-
ture Definition.

/components An association to a Data Attribute component.
MeasureDescriptor Inherits from Com-

ponentList
A metadata concept that defines the measure of a Data Structure
Definition.

/components
Dimension Inherits from Com-

ponent
A metadata concept used (most probably together with other
metadata concepts) to classify a statistical series, e.g. a statistical
concept indicating a certain economic activity or a geographical
reference area.

/role Association to the Concept that specifies the role that that the
Dimension plays in the Data Structure Definition.

/conceptIdentity An association to the metadata concept which defines the seman-
tic of the Dimension.

MeasureDimension Inherits from Di-
mension

A statistical concept that identifies the component in the key
structure that has an enumerated list of measures. This dimension
has, as its representation the Concept Scheme that enumerates the
measure concepts.

TimeDimension Inherits from Di-
mension

A metadata concept that identifies the component in the key struc-
ture that has the role of “time”.

continues on next page

1.2. Information Model 67

sdmx-im Documentation, Release 0.0.1

Table 1.1 – continued from previous page
Class Feature Description
DataAttribute Inherits from Com-

ponent; Sub class
ReportingYear,
StartDay

A characteristic of an object or entity.

THIS IS AN ALTERNATE WAY OF CREATING TABLES THAT IS MORE CUMBERSONE BUT AL-
LOWS FOR MUCH MORE FLEXIBILITY SUCH AS MULTI-LINE AND LISTS ETC.

Table 1.2: The general table 2
Class Feature Description
StructureUsage Feature See “SDMX Base”.
DataflowDefinition Inherits from

StructureUsage
Abstract concept (i.e. the structure without any data) of a flow of
data that providers will provide for different reference periods.

The explanation of the classes, attributes, and associations comprising the Representation is described in the
section on the SDMX Base.

Data Set – Relationship View

Context

A data set comprises the collection of data values and associated metadata that are collected or disseminated
according to a known DataStructureDefinition.

68 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Class Diagram

Figure 26 Class Diagram of the Data Set

Explanation of the Diagram

Narrative – Data Set

Note that the DataSet must conform to the DataStructureDefinition associated to the DataflowDefinition for which
this DataSet is an “instance of data”. Whilst the model shows the association to the classes of the DataStructure-
Definition, this is for conceptual purposes to show the link to the DataStructureDefinition. In the actual DataSet
as exchanged there must, of course, be a reference to the DataStructureDefinition and optionally a DataflowDef-
inition, but the DataStructureDefinition is not necessarily exchanged with the data. Therefore, the DataStruc-
tureDefinition classes are shown in the grey areas, as these are not a part of the DataSet when the DataSet is
exchanged. However, the structural metadata in the DataStructureDefinition can be used by an application to

1.2. Information Model 69

sdmx-im Documentation, Release 0.0.1

validate the contents of the DataSet in terms of the valid content of a KeyValue as defined by the Representation
in the DataStructureDefinition.

An organisation playing the role of DataProvider can be responsible for one or more DataSet.

A DataSet can be formatted either as a generic data set (GenericDataSet, GenericTimeseriesDataSet) or a DataS-
tructureDefinition specific data set (StructureSpecificDataSet, StructureSpecificTimeseriesDataSet). The generic
data set is structured in exactly the same way no matter which DataStructureDefinition the DataSet expresses.
The structured data set is structured according to one specific DataStructureDefinition. Depending on the syntax
chosen for the implementation the structured data set should support better validation at the syntax level.

A DataSet is a collection of a set of Observations that share the same dimensionality, which is specified by a set
of unique components (Dimension, MeasureDimension, TimeDimension) defined in the DimensionDescriptor of
the DataStructureDefinition, together with associated AttributeValues that define specific characteristics about the
artefact to which it is attached. - DataSet, Observation, set of Dimensions. It is structured in terms of a SeriesKey
to which Observations are reported.

The Observation can be the value of the variable being measured for the Concept associated to the PrimaryMeasure
in the MeasureDescriptor of the DataStructureDefinition. This is true when there is no MeasureDimension that
specifies the precise meaning of each Observation. Each Observation associates an ObservationValue with a Key-
Value (+observationDimension) which is the value for the “Dimension at the Observation Level”. Any dimension
can be specified as being the “Dimension at the Observation Level”, and this specification is made at the level of
the DataSet (i.e. it must be the same dimension for the entire DataSet).

If the “Dimension at the Observation Level” is the MeasureDimension it is possible (but not mandatory) that
an Observation can be reported with an explicit identification of one or more Concept in the ConceptScheme
referenced by the MeasureDimension as its Representation. In other words, the actual Concepts are explicitly
stated in the Observation.

If it is required to specify explicitly that the DataSet is time series then one of GenericTimeSeriesDataSet or Struc-
tureSpecificTimeSeriesDataSet is used and the KeyValue for the +observationDimension must be a TimeKeyValue.
In a GenericDataSet and a StructureSpecificDataSet it is permissible to have any dimension as the +observationDi-
mension including the TimeDimension.

The KeyValue is a value for one of MeasureDimension, TimeDimension, or Dimension specified in the DataStruc-
tureDefinition. If it is a Dimension it can be coded (CodedKeyValue) or uncoded (UncodedKeyValue). If it is a
MeasureDimension then it is MeasureKeyValue. If it is TimeDimension then it is a TimeKeyValue. The actual
value that the CodedDimensionValue can take must be one of the Codes in the Codelist specified as the Repre-
sentation of the Dimension in the DataStructureDefinition. The actual value that the MeasureDimensionValue can
take must be a valid representation specified for the Concept in the ConceptScheme to which this MeasureDimen-
sionValue is related (+valueFor).

The ObservationValue can be coded - this is the CodedObservation – or it can be uncoded – this is the Uncode-
dObservation.

The GroupKey is a sub unit of the Key that has the same dimensionality as the SeriesKey, but defines a subset of
the KeyValues of the SeriesKey. Its sub dimension structure is defined in the GroupDimensionDescriptor of the
DataStructureDefinition identified by the same id as the GroupKey. The id identifies a “type” of group and the pur-
pose of the GroupKey is to report one or more AttributeValue that are contained at this group level. The GroupKey
is present when the GroupDimensionDescriptor is related to the GroupRelationship in the DataStructureDefini-
tion. There can be many types of groups in a DataSet. If the Group is related to the DimensionRelationship in the
DataStructureDefinition then the AttributeValue will be reported with the appropriate dimension in the SeriesKey
or Observation.

In this way each of DataSet, SeriesKey, GroupKey, and Observation can have zero or more AttributeValue that
defines some metadata about the object to which it is associated. The allowable Concepts and the objects to which
these metadata can be associated (attached) are defined in the DataStructureDefinition.

The AttributeValue links to the object type (DataSet, SeriesKey, GroupKey, Observation,) to which it is associated.

70 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
DataSet Abstract Class

Sub classes
GenericDataSet
StructureSpecificDataSet

GenericTime
SeriesDataSet

StructureSpecificTime
SeriesDataSet

An organised collection of data.

reportingBegin A specific time period in a known
system of time periods that identi-
fies the start period of a report.

reportingEnd A specific time period in a known
system of time periods that identi-
fies the end period of a report.

dataExtractionDate A specific time period that identi-
fies the date and time that the data
are extracted from a data source.

validFrom Indicates the inclusive start time
indicating the validity of the infor-
mation in the data set.

validTo Indicates the inclusive end time in-
dicating the validity of the infor-
mation in the data set.

publicationYear Specifies the year of publication of
the data or metadata in terms of
whatever provisioning agreements
might be in force.

publicationPeriod Specifies the period of publication
of the data or metadata in terms of
whatever provisioning agreements
might be in force.

setId Provides an identification of the
data set.

action Defines the action to be taken by
the recipient system (update, ap-
pend, delete)

describedBy Associates a data flow definition
and thereby a Data Structure Defi-
nition to the data set.

+structuredBy Associates the Data Structure Def-
inition that defines the structure of
the Data Set. Note that the Data
Structure Definition is the same as
that associated (non-mandatory) to
the Dataflow Definition.

+publishedBy Associates the Data Provider that
reports/publishes the data.

+attachedAttribute Association to the Attribute Values
relating to the Data Set

continues on next page

1.2. Information Model 71

sdmx-im Documentation, Release 0.0.1

Table 1.3 – continued from previous page
GenericDataSet A data format structure that is able

to contain data corresponding to
any Data Structure Definition.

StructureSpecific A data format structure that con-
tains data corresponding to one
specific Data Structure Definition.

DataSet
GenericTimeseries A data format structure that is able

to contain timeseries data corre-
sponding to any Data Structure
Definition.

DataSet
StructureSpecific A data format structure that con-

tains timeseries data correspond-
ing to one specific Data Structure
Definition.

TimeseriesDataSet
Key Abstract class

Sub classes

SeriesKey
GroupKey

Comprises the cross product of
values of dimensions that identify
uniquely an Observation.

keyValues Association to the individual Key
Values that comprise the Key.

+attachedAttribute Association to the Attribute Values
relating to the Series Key or Group
Key.

KeyValue Abstract class
Sub classes
MeasureKeyValue
TimeKeyValue

CodedKeyValue
UncodedKeyValue

The value of a component of a key
such as the value of the instance
a Dimension in a Dimension De-
scriptor of a Data Structure Defini-
tion.

+valueFor Association to the key component
in the Data Structure Definition for
which this Key Value is a valid rep-
resentation.
Note that this is conceptual associ-
ation as the key component is iden-
tified explicitly in the data set.

MeasureKeyValue Inherits from
KeyValue

The value of the Measure Dimen-
sion component of the key. The
value is the Concept to which this
class is associated.

continues on next page

72 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Table 1.3 – continued from previous page
+value Association to the Concept.

Note that this is a conceptual as-
sociation showing that the Concept
must exist in the Concept Scheme
associated with the Measure Di-
mension in the Data Structure Def-
inition. In the actual Data Set the
value of the Concept is placed in
the Key Value.

TimeKeyValue Inherits from
KeyValue

The value of the Time Dimension
component of the key.

CodedKeyValue Inherits from
KeyValue

The value of a coded component of
the key. The value is the Code to
which this class is associated.

+value Association to the Code.
Note that this is a conceptual as-
sociation showing that the Code
must exist in the Code list asso-
ciated with the Dimension in the
Data Structure Definition. In the
actual Data Set the value of the
Code is placed in the Key Value.

UnCodedKeyValue Inherits from
KeyValue

The value of an uncoded compo-
nent of the key.

value The value of the key component.
startTime This attribute is only used if the

textFormat of the attribute is of the
Timespan type in the Data Struc-
ture Definition (in which case the
value field takes a duration).

+valueFor Associates Dimension, Measure
Dimension, or Time Dimension to
the Key Value, and thereby to the
Concept that is the semantic of the
Dimension, or Time Dimension.

GroupKey Inherits from
Key

A set of Key Values that comprise
a partial key, of the same dimen-
sionality as the Time Series Key
for the purpose of attaching Data
Attributes.

+describedBy Associates the Group Dimension
Descriptor defined in the Data
Structure Definition.

SeriesKey Inherits from
Key

Comprises the cross product of
values of all the Key Values that,
together with the Key Value of
the +observation Dimension iden-
tify uniquely an Observation.

+describedBy Associates the Dimension De-
scriptor defined in the Data Struc-
ture Definition.

Observation The value of the observed phe-
nomenon in the context of the Key
Values comprising the key.

continues on next page

1.2. Information Model 73

sdmx-im Documentation, Release 0.0.1

Table 1.3 – continued from previous page
+valueFor Associates the Primary Measure

defined in the Data Structure Defi-
nition.

+attachedAttribute Association to the Attribute Values
relating to the Observation.

+observationDimension Association to the Key Value that
holds the value of the “Dimension
at the Observation Level”.

ObservationValue Abstract class
Sub classes

UncodedObservation
CodedObservation

UncodedObservation Inherits from
ObservationValue

An observation that has a text
value.

value The value of the Uncoded Obser-
vation.

CodedObservation Inherits from
ObservationValue

An Observation that takes its value
from a code in a Code list.

+value Association to the Code that is the
value of the Observation.
Note that this is a conceptual as-
sociation showing that the Code
must exist in the Code list asso-
ciated with the Primary Measure
or the Concept of the Measure Di-
mension in the Data Structure Def-
inition. In the actual Data Set the
value of the Code is placed in the
Observation.

AttributeValue Abstract class
Sub classes

UncodedAttributeValue
CodedAttributeValue

The value of an attribute, such as
the instance of a Coded Attribute
or of an Uncoded Attribute in a
structure such as a Data Structure
Definition.

value The value of the attribute.
+valueFor Association to the Data Attribute

defined in the Data Structure Defi-
nition. Note that this is conceptual
association as the Concept is iden-
tified explicitly in the data set.

UncodedAttribute Inherits from An attribute value that has a text
value.

Value AttributeValue
startTime This attribute is only used if the

textFormat of the attribute is of the
Timespan type in the Data Struc-
ture Definition (in which case the
value field takes a duration).

CodedAttribute Inherits from An attribute that takes it value
from a Code in Code list.

Value AttributeValue
continues on next page

74 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Table 1.3 – continued from previous page
+value Association to the Code that is the

value of the Attribute Value.
Note that this is a conceptual asso-
ciation showing that the Code must
exist in the Code list associated
with the Data Attribute in the Data
Structure Definition. In the actual
Data Set the value of the Code is
placed in the Attribute Value.

1.2.7 Cube

Context

Some statistical systems create views of data based on a “cube” structure. In essence, a cube is an n-dimensional
object where the value of each dimension can be derived from a hierarchical code list. The utility of such cube
systems is that it is possible to “roll up” or “drill down” each of the hierarchy levels for each of the dimensions
to specify the level of granularity required to give a “view” of the data – some dimensions may be rolled up,
others may be drilled down. Such systems give a dynamic view of the data, with aggregated values for rolled up
dimension positions. For example, the individual countries may be rolled up into an economic region such as the
EU, or a geographical region such as Europe, whilst another dimension, such as “type of road” may be drilled
down to its lower level. The resulting measure (such as “number of accidents”) would then be an aggregation of
the value for each individual country for the specific type of road.

Such cube systems rely, not on simple code lists, but on hierarchical code sets (see section 8).

Support for the Cube in the Information Model

Data reported using a Data Structure Definition structure (where each dimension value, if coded, is taken from a
flat code list) can be described by a cube definition and can be processed by cube aware systems. The SDMX-IM
supports the definition of such cubes in the following way:

• The HierachicalCodelist defines the (often complex) hierarchies of codes

• If required, the StructureSet can

– group DataStructureDefinition that describe the cube

– provide a mapping mechanism between the codes in the flat code lists used by the DataStructureDef-
inition and a HierarchicalCodelist where the HierarchicalCodelist uses code lists that are not used in
the DataStructureDefinition

1.2.8 Metadata Structure Definition and Metadata Set

Context

The SDMX metamodel allows metadata:

1. To be exchanged without the need to embed it within the object that it is describing.

2. To be stored separately from the object that it describes, yet be linked to it (for example, an organisation has
a metadata repository which supports the dissemination of metadata resulting from metadata requests gen-
erated by systems or services that have access to the object for which the metadata pertains. This is common
in web dissemination where additional metadata is available for viewing (and eventually downloading) by
clicking on an “information” icon next to the object to which the metadata is attached).

1.2. Information Model 75

sdmx-im Documentation, Release 0.0.1

3. To be indexed to aid searching (example: a registry service can process a metadata report and extract
structural information that allows it to catalogue the metadata in a way that will enable users to query for
it).

4. To be reported according to a defined structure.

In order to achieve this, the following structures are modelled:

• metadata structure definition which has the following components:

– the object types to which the metadata are to be associated (attached)

– the components that, together, comprise a unique key of the object type to which the metadata are to
be associated

– the reporting structure comprising the metadata attributes that can be attached to the various object
types (these attributes can be structured in a hierarchy), together with any constraints that may apply
(e.g. association to a code list that contains valid values for the attribute when reported in a metadata
set)

• the metadata set, which contains reported metadata

Inheritance

Introduction

As with the Data Structure Definition Structure, many of the constructs in this layer of the model inherit from
the SDMX Base layer. Therefore, it is necessary to study both the inheritance and the relationship diagrams to
understand the functionality of individual packages. The diagram below shows the full inheritance tree for the
classes concerned with the MetadataStructureDefinition and the MetadataSet.

There are very few additional classes in the MetadataStructureDefinition package that do not themselves inherit
from classes in the SDMX Base. In other words, the SDMX Base gives most of the structure of this sub model
both in terms of associations and in terms of attributes. The relationship diagrams shown in this section show
clearly when these associations are inherited from the SDMX Base (see the Appendix “A Short Guide to UML in
the SDMX Information Model” to see the diagrammatic notation used to depict this). It is important to note that
SDMX base structures used for the MetadataStructureDefinition are the same as those used for the DataStructure-
Definition and so, even though the usage is slightly different, the underlying way of defining a MetadataStructure-
Definition is similar to that used for defining a DataStructureDefinition.

76 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Class Diagram - Inheritance

Figure 27: Inheritance class diagram of the Metadata Structure Definition

Explanation of the Diagram

Narrative

It is important to the understanding of the relationship class diagrams presented in this section to identify the
concrete classes that inherit from the abstract classes.

The concrete classes in this part of the SDMX metamodel which require to be maintained by Maintenance Agen-
cies all inherit from MaintainableArtefact. These are:

• StructureUsage (concrete class is MetadataflowDefinition)

• Structure (concrete class is MetadataStructureDefinition)

These classes also inherit the identity and versioning facets of IdentifiableArtefact, NameableArtefact, and Ver-
sionableArtefact.

1.2. Information Model 77

sdmx-im Documentation, Release 0.0.1

A Structure contains several lists of components. The concrete classes which inherit from ComponentList and in
themselves are sub components of the MetadataStructureDefinition are:

• MetadataTarget

• ReportStructure

ComponentList contains Components. The classes that inherit from Component are:

• Sub Classes of TargetObject

• MetadataAttribute

Metadata Structure Definition

Introduction

The diagrams and explanations in the rest of this section show how these concrete classes are related so as to
support the functionality required.

Structures Already Described

The MetadataStructureDefinition makes use of the following ItemScheme structures either as explicit concrete
classes in the model, or as possible lists which comprise the value domain of a TargetObject.

• CategoryScheme

• ConceptScheme

• Codelist

• OrganisationScheme

• Reporting Taxonomy

78 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Class Diagram – Relationship

Figure 28: Relationship class diagram of the Metadata Structure Definition

Explanation of the Diagram

Narrative

In brief a MetadataStructureDefinition (MSD) defines:

• The MetadataTarget which defines the components (TargetObject) and their Representation which are valid
for this MetadataStructureDefinition, and which are the metadata target object of one or more ReportStruc-
ture

• The ReportStructures comprising the MetadataAttributes that can be associated with the object type identi-
fied in the referenced MetadataTargets, and hierarchical structure of the attributes

The MetadataTarget comprises one or more TargetObjects. The combination of TargetObjects identifies a specific
object type to which metadata can be attached in a MetadataSet.

The TargetObject is one of the following:

1.2. Information Model 79

sdmx-im Documentation, Release 0.0.1

• DimensionDescriptorValuesTarget - this allows the specification of a full or partial key (as used in a dataset)
to be specified in a MetadataSet as the target object

• IdentifiableObjectTarget – this defines a specific object type, which can be any IdentifiableArtefact

• DataSetTarget – this specifies that the target object is a DataSet

• ReportPeriodTarget - this specifies that the report period must be present in the MetadataSet

• ConstraintContentTarget – this specifies that target object is the content of an AttachmentConstraint i.e. the
part of the data set or metadata set identified by the content of an AttachmentConstraint

The valid content of a TargetObject when reported in a MetadataSet is defined in the Representation. This can
be an enumerated representation (i.e. a reference to one of the sub clases of ItemScheme – these are Codelist,
ConceptScheme, OrganisationScheme, CategoryScheme, or ReportingTaxonomy) or non-enumerated.

Thus a single MetadataStructureDefinition can be defined for a discrete set of related object types. For example,
a single definition can be constructed to define the metadata that can be attached to any part of a Data Structure
Definition, or that can be attached to any artefact concerned with the reporting of quality metadata (such as data
provider and (data) category). The MetadataTarget specifies the identification properties of a specific object type to
which metadata can be attached in a MetadataSet. For example, in a DataStructureDefinition the MetadataTarget
might be a Dimension, and therefore the TargetObjects are those that uniquely identify a Dimension. This will
include both the DataStructureDefinition and the Dimension (both of these are an IdentifiableArtefact and will use
the IdentitifableObjectTarget) as both TargetObjects are required in order to identify uniquely a Dimension).

The ReportStructure comprises a set of MetadataAttributes - these can be defined as a hierarchy. Each Meta-
dataAttribute identifies a Concept that is reported or disseminated in a MetadataSet (/conceptIdentity) that uses
this MetadataStructureDefinition. Different MetadataAttributes in the same ReportStructure can use Concepts
from different ConceptSchemes. Note that a MetadataAttribute does not link to a Concept that defines its role in
this MetadataStructureDefinition (i.e. the MetadataAttribute does not play a role).

The MetadataAttribute can be specified as having multiple occurrences and/or specified as being mandatory
(minOccurs=1 or more) or conditional (minOccurs=0). A hierarchical ReportStructure can be defined by specify-
ing a hierarchy for a MetadataAttribute.

The ReportStructure is associated to one or more of the MetadataTargets which specify to which object the Meta-
dataAttributes specified in the ReportStructure are attached when reported in a MetadataSet.

It can be seen from this that the specification of the object types to which a MetadataAttribute can be attached is
indirect: the MetadataAttributes are defined in a ReportStructure which itself is attached to one or more Meta-
dataTarget and the actual object is identified by the TargetObjects comprising the MetadataTarget. This gives a
flexible mechanism by which the actual object types need not be defined in concrete terms in the model, but are
defined dynamically in the MetadataStructureDefinition, in much the same way as the keys to which data obser-
vation are “attached” in a DataStructureDefinition. In this way the MetadataStructureDefinition can be used to
define any set of MetadataAttributes and any set of object types to which they can be attached.

Each MetadataAttribute can have a Representation specified (using the /localRepresentation association). If this is
not specified in the MetadataStructureDefinition then the Representation is taken from that defined for the Concept
(the coreRepresentation association).

The definition of the various types of Representation can be found in the specification of the Base constructs. Note
that if the Representation is non-enumerated then the association is to the ExtendedFacet (which allows for xhtml
as a FacetValueType). If the Representation is enumerated then is must use a Codelist.

The MetadataStructureDefinition is linked to a MetadataflowDefinition. The MetadataflowDefinition does not
have any attributes in addition to those inherited from the Base classes.

80 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

1.2. Information Model 81

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
StructureUsage See “SDMX Base”.
Metadataflow Definition Inherits from:

StructureUsage
Abstract concept (i.e. the structure
without any metadata) of a flow of
metadata that providers will pro-
vide for different reference peri-
ods.

/structure Associates a Metadata Structure
Definition.

MetadataStructure Definition A collection of metadata concepts,
their structure and usage when
used to collect or disseminate ref-
erence metadata.

/grouping An association to a Metadata Tar-
get or Report Structure.

MetadataTarget Inherits from
ComponentList

A set of components that define
a key of an object type to which
metadata may be attached.

/components Associates the Target Object com-
ponents that define the key of the
Metadata Target.

TargetObject Abstract Class

Sub Classes
DimensionDescriptorValuesTarget
IdentifiableObjectTarget
DataSetTarget
ReportPeriodTarget

/localRepresentation Associates a Representation to the
Target Object that must be re-
spected when the object is identi-
fied in a Metadata Set. This may
be enumerated or non-enumerated.

DimensionDescriptorValuesTarget Inherits from
TargetObject

The target object is the key of a
data series.

IdentifiableObject Target Inherits from
TargetObject

The target object is a specified ob-
ject type.

objectType Identifies the object type.
DataSetTarget Inherits from

TargetObject
The target object is a Data Set.

ReportPeriodTarget Inherits from
TargetObject

The target is a report period. Note
that this does not describe the use
of an object, but rather serves as a
unique metadata key for metadata
reports. Metadata reports attached
to a particular object may vary
over time, and this time identifier
component can be used to disam-
biguate the reports, much like the
time dimension disambiguates ob-
servations in a data series.

ConstraintTarget Inherits from
TargetObject

The target object is the data or ref-
erence metadata that is identified
in the content of an Attachment
Constraint.

ReportStructure Inherits from:
ComponentList

Defines a set of concepts that com-
prises the Metadata Attributes to
be reported.

/components An association to the Metadata
Attributes relevant to the Report
Structure.

+reportFor Associates the Metadata Targets
for which this Report Structure is
used.

MetadataAttribute Identifies a Concept for which a
value may be reported in a Meta-
data Set.

/hierarchy Association to one or more child
Metadata Attribute.

/conceptIdentity An association to the concept
which defines the semantic of the
attribute.

isPresentational Indication that the Metadata At-
tribute is present for structural pur-
poses (i.e. it has child attributes)
and that no value for this attribute
is expected to be reported in a
Metadata Set using this Report
Structure.

minOccurs maxOccurs Specifies how many occurrences
of the Metadata Attribute may be
reported at this point in the Meta-
data Report.

ConceptUsage The use of a Concept as Metadata
Attribute.

concept Association to a Concept in a Con-
ceptScheme.

/localRepresentation Associates a Representation that
overrides any core representation
specified for the Concept itself.

Representation The representation of the Metadata
Attribute.

82 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Metadata Set

Class Diagram

Figure 29: Relationship Class Diagram of the Metadata Set

Explanation of the Diagram

Narrative

Note that the MetadataSet must conform to the MetadataStructureDefinition associated to the MetadataflowDefini-
tion for which this MetadataSet is an “instance of metadata”. Whilst the model shows the association to the classes
of the MetadataStructureDefinition, this is for conceptual purposes to show the link to the MetadataStructureDefi-
nition. In the actual MetadataSet as exchanged there must, of course, be a reference to the MetadataStructureDef-
inition and the ReportStructure, and optionally a MetadataflowDefinition, but the MetadataStructureDefinition is
not necessarily exchanged with the metadata. Therefore, the MetadataStructureDefinition classes are shown in the
grey areas, as these are not a part of the MetadataSet itself.

An organisation playing the role of DataProvider can be responsible for one or more MetadataSet.

A MetadataSet comprises one or more MetadataReport, each of which must be for the same ReportStructure. It
references both a MetadataTarget, defined in the MetadataStructureDefinition, and contains a TargetObjectKey
and ReportedAttributes.

The identified ReportStructure specifies which MetadataAttributes are expected as ReportedAttributes. The identi-
fied MetadataTarget specifies the expected content of the TargetObjectKey i.e. it specifies the information required

1.2. Information Model 83

sdmx-im Documentation, Release 0.0.1

to identify the object for which the ReportedAttributes are reported.

The TargetObjectValue can be one of:

• TargetDataKey – this can contain:

– a SeriesKey (set of dimension values)

– a SeriesKey plus a value or values (giving time range) for the TimeDimension (TimeDimensionValue)

– a value of values for the TimeDimension

• TargetIdentifiableObject -this identifies any identifiable object (which includes both Maintainable and Iden-
tifiable objects

• TargetDataSet – this identifies a DataSet

• TargetReportPeriod – this specifies the report period for the Report

A simple text value for the ReportedAttribute uses the NonEnumeratedAttributeValue sub class of ReportedAt-
tribute whilst a coded value uses the EnumeratedAttributeValue sub class.

The NonEnumeratedAttributeValue can be one of:

• XHTMLAttributeValue – the content is XHTML

• TextAttributeValue – the content is textual and may contain the text in multiple languages

• OtherNonEnumeratedAttributeValue – the content is a string value that must conform to the Representation
specified for the MetadataAttribute in the MetadataStructureDefinition for the relevant ReportStructure

The EnumeratedAttributeValue contains a value for a Code specified as the Representation for the MetadataAt-
tribute in the MetadataStructureDefinition for the relevant ReportStructure.

Definitions

Class Feature Description
MetadataSet Any organised collection of meta-

data.
reportingBegin A specific time period in a known

system of time periods that identi-
fies the start period of a report.

reportingEnd A specific time period in a known
system of time periods that identi-
fies the ebd period of a report.

dataExtractionDate A specific time period that identi-
fies the date and time that the data
are extracted from a data source.

validFrom Indicates the inclusive start time
indicating the validity of the infor-
mation in the data set.

validTo Indicates the inclusive end time in-
dicating the validity of the infor-
mation in the metadata set.

publicationYear Specifies the year of publication of
the data or metadata in terms of
whatever provisioning agreements
might be in force.

publicationPeriod Specifies the period of publication
of the data or metadata in terms of
whatever provisioning agreements
might be in force.

continues on next page

84 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Table 1.4 – continued from previous page
setId Provides an identification of the

metadata set.
action Defines the action to be taken by

the recipient system (update, re-
place, delete)

+describedBy Associates a Metadataflow Defini-
tion to the Metadata Set.

+structuredBy Associates the Metadata Structure
Definition that defines the struc-
ture of the Metadata Set. Note that
the Metadata Structure Definition
is the same as that associated (non-
mandatory) to the Metadataflow
Definition.

+publishedBy Associates the Data Provider that
reports/publishes the metadata.

+describedBy Reference to the Report Structure.
MetadataReport A set of values for Metadata At-

tributes defined in a Report Struc-
ture of a Metadata Structure Defi-
nition.

+attachesTo Associates the object key to which
metadata is to be attached.

+target Associates the Metadata Target
that defines the target object to
which the metadata are to be asso-
ciated.

+metadata Associates the Reported Attribute
values which are to be associated
with the object or objects identified
by the Target Object Key.

TargetObjectKey Identifies the key of the object to
which the metadata are to be at-
tached.

+valueFor Associates the Metadata Target
that identifies the object type and
the component structure of the Tar-
get Object Key.
Note that this is a conceptual as-
sociation showing the link to the
MSD construct.

+keyValues Associates the Target Object Val-
ues of the Target Object Key.

TargetObjectValue Abstract class
Sub classes are

TargetDataKey
TargetIdentifiableObject
TargetDataSet
TargetReportPeriod

The key of an individual object of
the type specified in the Metadata
Target of the Metadata Structure
Definition.

continues on next page

1.2. Information Model 85

sdmx-im Documentation, Release 0.0.1

Table 1.4 – continued from previous page
+valueFor Associates the Target Object for

which this value is provided.
Note that this is a conceptual as-
sociation showing the link to the
MSD construct.

TargetDataKey Inherits from
TargetObjectValue

The identification of the compo-
nents and the values that form the
data or metadata key.

ComponentValue Collectively contain the identifica-
tion of the components and the val-
ues that form the data key.

value The key value.
+valueFor Associates the Component for

which the value is declared.
TimeDimensionValue Contains identification of the Time

Dimension and the value.
TargetIdentifiable Inherits from Specifies the identification of an

Identifiable object.
Object TargetObjectValue
StructureRef Contains the identification of an

Identifiable object.
structureType The object type of the target ob-

ject.
Maintainable Identification of the target object

by means of its identifier con-
structs i.e agency ID, id, version
for Maintainable Object plus, for
Identifiable Object, the id.

ArtefactRef
Identifiable
ArtefactRef

+containedObject Association to a contained object
in a hierarchy of Identifiable Ob-
jects such as a Transition in a Pro-
cess Step.

TargetDataSet Inherits from
TargetObjectValue

Contains the identification of a
Data Set

TargetReportPeriod Inherits from
TargetObjectValue

Contains the period covered by the
Metadata Report.

ReportedAttribute Abstract class
Sub classes are:

NonEnumeratedAttributeValue
EnumeratedAttributeValue

The value for a Metadata Attribute.

continues on next page

86 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Table 1.4 – continued from previous page
+valueFor Association to the Metadata At-

tribute in the Metadata Structure
Definition that identifies the Con-
cept and allowed Representation
for the Reported Attribute.
Note that this is a conceptual as-
sociation showing the link to the
MSD construct. The syntax for
the Reported Attribute will state,
in some form, the id of the Meta-
data Attribute.

+child Association to a child Reported
Attribute consistent with the hier-
archy defined in the Report Struc-
ture for the Metadata Attribute for
which this child is a Reported At-
tribute.

NonEnumerated AttributeValue Inherits from
ReportedAttribute
Sub class:

XHTMLAttributeValue
TextAttributeValue
OtherNonEnumerated
AttributeValue

The content of a Reported At-
tribute where this is textual.

XHTMLAttributeValue This contains XHTML.
value The string value of the XHTML.

TextAttributeValue This value of a Reported Attribute
where the content is human-
readable text.

text The string value is text. This can
be present in multiple language
versions.

OtherNonEnumerated Attribute-
Value

The value of a Reported Attribute
where the content is not of human-
readable text.

value A text string that is consistent in
format to that defined in the Repre-
sentation of the Metadata Attribute
for which this is a Reported At-
tribute.

EnumeratedAttributeValue Inherits from
MetadataAttributeValue

The content of a Reported At-
tribute that is taken from a Code in
a Code list.

value The Code value of the Reported
Attribute.

continues on next page

1.2. Information Model 87

sdmx-im Documentation, Release 0.0.1

Table 1.4 – continued from previous page
+value Association to a Code in the Code

list specified in the Representa-
tion of the Metadata Attribute for
which this Reported Attribute is
the value
Note that this shows the concep-
tual link to the Item that is the
value. In reality, the value itself
will be contained in the Enumer-
ated Attribute Value.

1.2.9 Hierarchical Code List

Scope

The Codelist described in the section on structural definitions supports a simple hierarchy of Codes, and restricts
any child Code to having just one parent Code. Whilst this structure is useful for supporting the needs of the
DataStructureDefinition and the MetadataStructureDefinition, it may not sufficient for supporting the more com-
plex associations between codes that are often found in coding schemes such as a classification scheme. Often,
the Codelist used in a DataStructureDefinition is derived from a more complex coding scheme. Access to such a
coding scheme can aid applications, such as OLAP applications or data visualisation systems, to give more views
of the data than would be possible with the simple Codelist used in the DataStructureDefinition.

Note that a hierarchical code list is not necessarily a balanced tree. A balanced tree is where levels are pre-defined
and fixed, (i.e. a level always has the same set of codes, and any code has a fixed parent and child relationship to
other codes). A statistical classification is an example of a balanced tree, and the support for a balanced hierarchy
is a sub set, and special case, of the hierarchical code list.

The principal features of the Hierarchical Codelist are:

1. A child code can have more than one parent.

2. There can be more than one code that has no parent (i.e. more than one “root node”).

3. There may be many hierarchies (or “views”) defined, in terms of the associations between the codes. Each
hierarchy serves a particular purpose in the reporting, analysis, or dissemination of data.

4. The levels in a hierarchy can be explicitly defined or they can be implicit: (i.e. they exist only as parent/child
relationships in the coding structure).

88 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Inheritance

Class Diagram

Figure 30: Inheritance class diagram for the Hierarchical Codelist

Explanation of the Diagram

Narrative

The HierarchicalCodelist inherits from MaintainableArtefact and thus has identification, naming, versioning and
a maintenance agency. Both Hierarchy and Level are a NameableArtefact and therefore have an Id, multi-lingual
name and multi-lingual description. A HierachicalCode is an IdentifiableArtefact.

It is important to understand that the Codes participating in a HierarchicalCodelist are not themselves contained
in the list – they are referenced from the list and are maintained in one or more Codelists. This is explained in the
narrative of the relationship class diagram below..

1.2. Information Model 89

sdmx-im Documentation, Release 0.0.1

Definitions

The definitions of the various classes, attributes, and associations are shown in the relationship section below.

Relationship

Class Diagram

Figure 31: Relationship class diagram of the Hierarchical Code Scheme

Explanation of the Diagram

Narrative

The basic principles of the HierarchicalCodelist are:

1. The HierarchicalCodelist is a specification of the Codes comprising the scheme and the specification of the
structure of the Codes in the scheme in terms of one or more Hierarchy.

2. The Codes in the HierarchicalCodelist are not themselves a part of the scheme, rather they are references to
Codes in one or more external Codelists.

3. Any individual Code may participate in many Hierarchys, in order to give structure to the Hierarchical-
Codelist.

90 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

4. The Hierarchy of Codes is specified in HierarchicalCode. This references the Code and its immediate child
HierarchicalCodes.

A Hierarchy can have formal levels (hasFormalLevels=”true”). However, even if hasFormalLevels=”false” the
Hierarchy can still have one or more Levels associated in order to document information about the Hierarchical-
Codes.

If hasFormalLevels=”false the Hierarchy is “value based” comprising a hierarchy of codes with no formal Levels.
If hasFormalLevels=”true” then the hierarchy is “level based” where each Level is a formal Level in the Hierarchi-
calCodeList, such as those present in statistical classifications. In a “level based” hierarchy each HierarchicalCode
is linked to the Level in which it resides (which must be in the same Hierarchy as the HierarchicalCode). It is
expected that all HierarchicalCodes at the same hierarchic level defined by the +parent/+child association will be
linked to the same Level. Note that the +level association need only be specified if the HierarchicalCode is at a
different hierarchical level ((implied by the HierarchicalCode parent/child association) than the actual Level in the
level hierarchy (implied by the Level parent/child association).

[Note that organisations wishing to be compliant with accepted models for statistical classifications should ensure
that the Id is the number associated with the Level, where Levels are numbered consecutively starting with level 1
at the highest Level].

The Level may have CodingFormat information defined (e.g. coding type at that level).

1.2. Information Model 91

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
Hi-
erar-
chi-
cal-
Code

Inherits
from:

An organised collection of codes that may participate in many parent/child relationships
with other Codes in the scheme, as defined by one or more Hierarchy of the scheme.

list Main-
tain-
ableArt-
efact
+hierar-
chy

Association to Hierarchies of Codes.

Hi-
erar-
chy

Inherits
from:
Name-
ableArt-
efact

A classification structure arranged in levels of detail from the broadest to the most detailed
level.

hasFor-
mal-
Levels

If “true” this indicates a hierarchy where the structure is arranged in levels of detail from
the broadest to the most detailed level.
If “false” this indicates a hierarchy structure where the items in the hierarchy have no
formal level structure.

+codes Association to the top-level Hierarchical Codes in the Hierarchy.
+level Association to the top Level in the Hierarchy.

Level Inherits
from
Name-
ableArt-
efact

In a “level based” hierarchy this describes a group of Codes which are characterised by
homogeneous coding, and where the parent of each Code in the group is at the same higher
level of the Hierarchy.
In a “value based’ hierarchy this describes information about the HierarchicalCodes at the
specified nesting level.

+code-
Format

Association to the Coding Format.

+child Association to a child Level of Level.
Cod-
ing-
For-
mat

Specifies format information for the codes at this level in the hierarchy such as whether
the codes at the level are alphabetic, numeric or alphanumeric and the code length.

Hi-
erar-
chi-
cal-
Code

A hierarchic structure of code references.

valid-
From

Date from which the construct is valid

validTo Date from which construct is superseded.
+code Association to the Code that is used at the specific point in the hierarchy.
+child Association to a child Code in the hierarchy.
+level Association to a Level where levels have been defined for the Hierarchy.

Code The Code to be used at this point in the hierarchy.
/items Association to the Code list containing the Code.

Codelist The Code list containing the Code.

92 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

1.2.10 Structure Set and Mappings

Scope

A StructureSet allows components in one structure to be mapped to components in another structure of the same
type. In this context the term “structure” is used loosely to include types of ItemScheme, types of Structure, and
types of StructureUsage. The allowable structures that can be mapped, and the components that can be mapped
within these structures are:

Structure Type Component type
Codelist Code
Category Scheme Category
Concept Scheme Concept
Organisation
Scheme

Organisation – this allows mapping any type of Organisation to any type of Organisation
(e.g. a Data Provider to an Organisation Unit)

Hierarchical
Codelist

Hierachical Code to Code or vice-versa

Data Structure
Definition

Dimension, Measure Dimension, Time Dimension. Data Attribute, Primary Measure

Metadata Structure
Definition

Target Object, Metadata Attribute

Dataflow Defini-
tion

None

Metadataflow Defi-
nition

None

The StructureSet can contain one or more “maps” and can define related structures (via the association +relat-
edStructure) which group related DataStructureDefinitions, MetadataStructureDefinitions, DataflowDefinintions,
MetadataflowDefinintions.

Structure Set

1.2. Information Model 93

sdmx-im Documentation, Release 0.0.1

Class Diagram – Inheritance

Figure 32: Inheritance Class Diagram of the Structure Set

94 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Class Diagram – Relationship

Figure 33: Relationship Class diagram of the Structure Set

Explanation of the Diagram

Narrative

The StructureSet is a MaintainableArtefact. It can contain:

1. A set of references to concrete sub-classes of Structure and StructureUsage (DataStructureDefinition, Meta-
dataStructureDefinition, DataflowDefinition or MetadataflowDefinition) to indicate that a relationship exists
between them. For example there may be a group of DataStructureDefinition which, together, form the def-
inition of a cube, each DataStructureDefinition defining a part of the cube.

2. A set of StructureMaps which define which components of one structure are equivalent to those in another
in a ComponentMap.

3. A set of ItemSchemeMaps which define the mapping between two concrete classes of ItemScheme, and the
mapping of the Items in these schemes, such as the mapping of Codes in two Codelists..

4. A set of HybridCodelistMaps which define the mapping between a Codelist and a HierachicalCodelist.

The StructureMap references two Structures or StructureUsages. In concrete terms these references will be to
DataStructureDefinitions, MetadataStructureDefinitions, DataflowDefinitions or MetadataflowDefinitions.

1.2. Information Model 95

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
Struc-
ture-
Set

Inherits from
Maintain-
ableArtefact

A maintainable collection of structural maps that link components together in a
source/target relationship where there is a semantic equivalence between the source
and the target components.

+relatedStruc-
ture

Association to a set of Data Structure Definitions and Metadata Structure Defini-
tions.

+relatedStruc-
tureUsage

Association to a set of Dataflow Definition and Metadataflow Definition.

+map Association to Structure Map.
+item-
SchemeMap

Association to Item Scheme Map

Struc-
tureMap

Inherits from
NameableArte-
fact

Links a source and target structure where there is a semantic equivalence between
the source and the target structures.

sourceStruc-
ture

Association to the source Structure.

targetStructure Association to the target Structure which must be of the same type as the source
Structure.

sourceStruc-
tureUsage

Association to the source Structure Usage.

targetStruc-
tureUsage

Association to the target Structure Usage which must be of the same type as the
source Structure Usage.

Structure Map

96 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Class Diagram

Figure 34: Class diagram of the Structure Map

Explanation of the Diagram

Narrative

The StructureMap contains a set of ComponentMaps, each one indicating equivalence between Components of
the referenced Structure. ComponentMap has a RepresentationMapping which can be one of the concete classes
of ItemSchemeMap (e.g. for a Dimension this would be a CodelistMap) or ToTextFormat which takes values:
id, name, description. This instructs mapping tools to use the id, name or description of a coded component to
determine equivalence with an uncoded component’s value.

An example of a ComponentMap is linking the source Component that is a Dimension in the source DataStruc-
tureDefinition (identified in the StructureMap) to the equivalent target Component that is a Dimension in the target
DataStructureDefinition).

1.2. Information Model 97

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
StructureMap Inherits from NameableArtefact Links a source and target structure

where there is a semantic equiva-
lence between the source and the
target structures.

alias An alternate identification of the
map, that allows the relation of
multiple maps to be expressed by
the sharing of this value.

+map Association to the Component
Map.

ComponentMap Inherits from AnnotableArtefact Links a source and target Com-
ponent where there is a seman-
tic equivalence between the source
and the target Components.

alias An alternate identification of the
map, that allows the relation of
multiple maps to be expressed by
the sharing of this value.

preferredLanguage Specifies the language to use for
the content of the To Text Format
option of RepresentationMap

+source Association to the source Compo-
nent.

+target Association to the target Compo-
nent.

+contentMap Association to the constructs that
map the content of the Compo-
nents – this will be either one of
sub classes of Item Scheme or a
mapping to text.

Representation Mapping AbstractClass
Sub classes:

SchemeMap
ToTextFormat

Defines the mapping of the con-
tent of the source Component to
the content of the target Compo-
nent.

SchemeMap Inherits from
RepresentationMapping

Associates an Item Scheme Map

ToTextFormat Inherits from
RepresentationMapping

Defines the text format

textFormat Text format type.
toValueType Identifies the construct to be taken

from the Item of the source Com-
ponent when mapping the content
of the source Component to the
content of the target Component.

ToValueType Enumeration of the construct in the
Item.

98 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Item Scheme Map

Context

The ItemSchemeMap is used to associate the Items in two different ItemSchemes. This is a generic mechanism
that can be used to map Items. Specific models exist for mapping schemes where there is a semantic equivalence
between Items in the ItemScheme. The model supports the mapping of any two ItemSchemes of the same type.
These are:

• ConceptScheme

• CategoryScheme

• OrganisationScheme

• Codelist

• ReportingTaxonomy

Class Diagram

Figure 35: Class diagram of the Item Scheme Map

Explanation of the Diagram

Narrative

Both the ItemSchemeMap and the ItemAssociation inherit from NameableArtefact.

Each of ConceptSchemeMap, CategorySchemeMap, CodelistMap and OrganisationSchemeMap, ReportingTax-
onomyMap provides a mechanism for specifying semantic equivalence between the items (Concept, Cate-
gory,Code, Organisation, ReportingCategory) in the scheme. Note that any type of OrganisationScheme and
Organisation can be mapped (e.g. an Agency in an AgencyScheme can be mapped to an OrganisationUnit in an
OrganisationUnitScheme).

1.2. Information Model 99

sdmx-im Documentation, Release 0.0.1

Each scheme map identifies a +source and +target scheme whose content is to be mapped. Note that many
schemes can be joined together via a set of pair-wise mappings. The ConceptMap, CategoryMap, CodelistMap,
OrganisationMap, and ReportingTaxonomyMap denotes which Concepts, Categorys, Codes, Organisations, and
ReportingCategorys are semantically equivalent and a shared alias can be specified to refer to a set of mapped
concepts to facilitate querying.

Definitions

Class Feature Description
ItemSchemeMap Inherits from

NameableArtefact
Sub Classes

ConceptSchemeMap
CategorySchemeMap
CodelistMap
OrganisationSchemeMap
ReportingTaxonomySchemeMap

Associates two Item Schemes

alias An alternate identification of the
map, that allows the relation of
multiple maps to be expressed by
the sharing of this value.

source Association to the source Item
Scheme.

target Association to the target Item
Scheme.

ItemAssociation Association to the Item Associa-
tion.

ItemAssociation Inherits from
AnnotableArtefact
Sub Classes

ConceptMap
CategoryMap
CodeMap
OrganisationMap
ReportingCategoryMap

source Association to the source Item.
target Association to the target Item.

ConceptSchemeMap Inherits from
ItemSchemeMap

Associates a source and target
Concept Scheme

/source Association to the source Concept
Scheme.

/target Association to the target Concept
Scheme.

ConceptMap Inherits from
ItemAssociation

Associates a source and target
Concept.

/source Association to the source Concept.
/target Association to the target Concept.

CodelistMap Inherits from
ItemSchemeMap

Associates a source and target
Code list.

continues on next page

100 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Table 1.5 – continued from previous page
/source Association to the source Code

list.
/target Association to the target Code list.

CodeMap Inherits from
ItemAssociation

Associates a source and target
Code.

/source Association to the source Code.
/target Association to the target Code.

CategorySchemeMap Inherits from
ItemSchemeMap

Associates a source and target Cat-
egory Scheme.

/source Association to the source Category
Scheme.

/target Association to the target Category
Scheme.

CategoryMap Inherits from
ItemAssociation

Associates a source and target Cat-
egory.

/source Association to the source Cate-
gory.

/target Association to the target Category.
OrganisationSchemeMap Inherits from

ItemSchemeMap
Associates a source and target Or-
ganisation Scheme.

/source Association to the source Organi-
sation Scheme.

/target Association to the target Organisa-
tion Scheme.

OrganisationMap Inherits from
ItemAssociation

Associates a source and target Or-
ganisation.

/source Association to the source Organi-
sation.

/target Association to the target Organisa-
tion.

ReportingTaxonomyMap Inherits from
ItemSchemeMap

Associates a source and target Re-
porting Taxonomy.

/source Association to the source Report-
ing Taxonomy.

/target Association to the target Reporting
Taxonomy.

ReportingCategoryMap Inherits from
ItemAssociation

Associates a source and target Re-
porting Category.

/source Association to the source Report-
ing Category.

/target Association to the target Reporting
Category.

Hybrid Codelist Map

1.2. Information Model 101

sdmx-im Documentation, Release 0.0.1

Class Diagram

Figure 36: Class diagram of the Hybrid Codelist Map

Explanation of the Diagram

Narrative

The HybridCodelistMap maps the content of a Codelist and a HierachicalCodelist. It contains a mapping of
the codes in the two schemes (HybridCodeMap). The HybridCodeMap maps either a Code or HierachicalCode
to a Code or HierarchicalCode. The HierarchicalCode is identified by a combination of the Hierarchy and the
HierarchicalCode.

102 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
HybridCodelist Inherits from Associates a Codelist and a Hierar-

chical Codelist.
Map NameableArtefact

alias An alternate identification of the
map, that allows the relation of
multiple maps to be expressed by
the sharing of this value.

+source Association to the source List.
+target Association to the target List.
+hybridCodeMap Association to the set of Hybrid

Code Maps in the Hybrid Codelist
Map.

SourceList Abstract Class
Sub classes

SourceCodelist
SourceHierarchical
Codelist

TargetList Abstract Class
Sub classes

TargetCodelist
TargetHierarchical
Codelist

SourceCodelist Identifies the Codelist where this is
the source of the map.

TargetCodelist Identifies the Codelist where this is
the target of the map.

SourceHierarchical Identifies the Hierarchical Codelist
where this is the source of the map.

Codelist
TargetHierarchical Identifies the Hierarchical Codelist

where this is the target of the map.
Codelist
HybridCodeMap Inherits from

AnnotableArtefact
Associates the source and target
codes in Hybrid Codelist Map.

+source Associates the Source Code Map.
+target Associates the Target Code Map.

SourceCodeMap Abstract Class
Sub classes

SourceCode
SourceHierarchical
Code

TargetCodeMap Abstract Class
Sub classes

TargetCode
TargetHierarchical
Code

SourceCode Identifies the Code where this is
the source of the map.

TargetCode Identifies the Code where this is
the target of the map.

SourceHierarchical Identifies the Hierarchical Code
where this is the source of the map

Code
TargetHierarchical Identifies the Hierarchical Code

where this is the target of the map.
Code
HierarchicalCode Reference References both the Hierarchy and

the Hierarchical Code in a Hierar-
chical Codelist.

+hierarchy
+codeAssociation

Associates the Hierarchical Code
in the Hierarchy of the Hierarchi-
cal Codelist.

1.2. Information Model 103

sdmx-im Documentation, Release 0.0.1

1.2.11 Constraints

Scope

The scope of this section is to describe the support in the metamodel for specifying both the access to and the
content of a data source. The information may be stored in a resource such as a registry for use by applications
wishing to locate data and metadata which is available via the Internet. The Constraint is also used to specify a
sub set of a Codelist which may used as a partial code list which is relevant in the context of the artefact to which
the Constraint is attached e.g. Data Structure Definition, Dataflow, Provision Agreement.

Note that in this metamodel the term data source refers to both data and metadata sources, and data provider refers
to both data and metadata providers.

A data source may be a simple file of data or metadata (in SDMX-ML format), or a database or metadata repository.
A data source may contain data for many data or metadataflows (called DataflowDefinition, and MetadataflowDef-
inition in the model), and the mechanisms described in this section allow an organisation to specify precisely the
scope of the content of the data source where this data source is registered (SimpleDataSource, QueryDataSource).

The DataflowDefinition and MetadataflowDefinition, themselves may be specified as containing only a sub set of
all the possible keys that could be derived from a DataStructureDefinition or MetadataStructureDefinition.

These specifications are called Constraint in this model.

Inheritance

Class Diagram of Constrainable Artefacts - Inheritance

Figure 37: Inheritance class diagram of constrainable and provisioning artefacts

Explanation of the Diagram

Narrative

Any artefact that is derived from ConstrainableArtefact can have constraints defined. The artefacts that can have
constraint metadata attached are:

• DataflowDefinition

• ProvisionAgreement

• DataProvider – this is restricted to release calendar

• MetadataflowDefinition

• DataStructureDefinition

• MetadataStructureDefinition

• DataSet

104 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

• SimpleDataSource – this is a registered data source where the registration references the actual DataSet or
MetadataSet

• QueryDataSource

Note that, because the Constraint can specify a sub set of the component values implied by a specific Struc-
ture (such a specific DataStructureDefinition or specific MetadataStructureDefinition), the ConstrainableArtefacts
must be associated with a specific Structure. Therefore, whilst the Constraint itself may not be linked directly to
a DataStructureDefinition or MetadataStructureDefinition, the artefact that it is constraining will be linked to a
DataStructureDefinition or MetadataStructureDefinition. As a Data Provider does not link to any one specific
DSD or MSD the type of information that can be contained in a Constraint linked to a DataProvider is restricted
to Release Calendar.

Constraints

Relationship Class Diagram – high level view

Figure 38: Relationship class diagram showing constraint metadata

Explanation of the Diagram

Narrative

The constraint mechanism allows specific constraints to be attached to a ConstrainableArtefact. With the excep-
tion of ReferencePeriod, and ReleaseCalendar these constraints specify a sub set of the total set of values or keys
that may be present in any of the ConstrainableArtefacts.

For instance a DataStructureDefinition specifies, for each Dimension, the list of allowable code values. However, a
specific DataflowDefinition that uses the DataStructureDefinition may contain only a sub set of the possible range
of keys that is theoretically possible from the DataStructureDefinition definition (the total range of possibilities is
sometimes called the Cartesian product of the dimension values). In addition to this, a DataProvider that is capable
of supplying data according to the DataflowDefinition has a ProvisionAgreement, and the DataProvider may also
wish to supply constraint information which may further constrain the range of possibilities in order to describe
the data that the provider can supply. It may also be useful to describe the content of a datasource in terms of the
KeySets or CubeRegions contained within it.

1.2. Information Model 105

sdmx-im Documentation, Release 0.0.1

A ConstrainableArtefact can have two types of Constraint:

1. ContentConstraint – is used solely as a mechanism to specify either the available set of keys (DataKeySet,
MetadataKeySet) or set of component values (CubeRegion, MetadatTargetRegion) in a DataSource such as
a DataSet or a database (QueryDatasource), or the allowable keys that can be constructed from a DataS-
tructureDefinition. Multiple such constraints may be present for a ConstrainableArtefact. For instance,
there may be a ContentConstraint that specifies the values allowed for the ConstrainableArtefact (role is
allowableContent) which can be used for validation or for constructing a partial code list, whilst another
constraint can specify the actual content of a data or metadata source (role is actualContent).

2. AttachmentConstraint – is used as a mechanism to define slices of the full set of data and to which metadata
can be attached in a Data Set or MetadataSet. These slices can be defined either as a set of keys (KeySet) or
a set of component values (CubeRegion). There can be many AttachmentConstraints specified for a specific
AttachableArtefact.

In addition to (DataKeySet, MetadataKeySet, CubeRegion, MetadataTargetRegion, a Constraint can have a Ref-
erencePeriod defining one of more date ranges (ValidityPeriod) specifying the time period for which data or
metadata are available in the ConstrainableArtefact and a ReleaseCalendar specifying when data are released for
publication or reporting.

Relationship Class Diagram – Detail

Figure 39: Constraints - Key Set Constraints

106 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Figure 40: Constraints - Cube Region and Metadata Target Region Constraints

Explanation of the Diagram

A Constraint is a MaintainableArtefact.

A Constraint has a choice of two ways of specifying value sub sets:

1. As a set of keys that can be present in the DataSet (DataKeySet) or MetadataSet (MetadataKeySet). Each
DataKey or MetadataKey specifies a number of ComponentValues each of which reference a Component
(e.g. Dimension, TargetObject). Each ComponentValue is a value that may be present for a Component of
a structure when contained in a DataSet or MetadataSet. The MetadataKeySet must also identify the Meta-
dataTarget as there can be many of each of these in a MetadataStructureDefinition. For the DataKeySet
the equivalent identification is not necessary as there is only one DimensionDescriptor and one Attribut-
eDescriptor.

2. As a set of CubeRegions or MetadataTaregetRegions each of which defines a “slice” of the total structure
(MemberSelection) in terms of one or more MemberValues that may be present for a Component of a
structure when contained in a DataSet or MetadataSet.

The difference between (1) and (2) above is that in (1) a complete key is defined whereas in (2) above the “slice”
defines a list of possible values for each of the Components but does not specify specific key combinations. In
addition, in (1) the association between Component and DataKeyValue or MetadataKeyValue is constrained to
the components that comprise the key or identifier, whereas in (2) it can contain other component types (such as
attributes). The value in ComponentValue.value and MemberValue.value must be consistent with the Represen-
tation declared for the Component in the DataStructureDefinition or MetadataStructureDefinition. Note that in
all cases the “operator” on the value is deemed to be “equals”. Furthermore, it is possible in a MemberValue to
specify that child values (e.g. child codes) are included in the constraint by means of the cascadeValues attribute.

It is possible to define for the DataKeySet, DataKey, MetadataKeySet, MetadataKey, CubeRegion, MetadataTarge-
tRegion, and MemberSelection whether the set is included (isIncluded = “true”) or excluded (isIncluded = ”false”)
from the constraint definition. This attribute is useful if, for example, only a small sub-set of the possible values
are not included in the set, then this smaller sub-set can be defined and excluded from the constraint. Note that if

1.2. Information Model 107

sdmx-im Documentation, Release 0.0.1

the child construct is “included: and the parent construct is “excluded” then the child construct is included in the
list of constructs that are “excluded”.

Definitions

Class Feature Description
Constrainable Artefact

Abstract Class
Sub classes are:

DataflowDefinition
Metadataflow
Definition
ProvisionAgreement
DataProvider
QueryDatasource
SimpleDatasource
DataStructure
Definition
MetadataStructure Definition

An artefact that can have Con-
straints specified.

content Associates the metadata that con-
strains the content to be found in a
data or metadata source linked to
the Constrainable Artefact.

attachment Associates the metadata that con-
strains the valid content of a Con-
strainable Artefact to which meta-
data may be attached.

Constraint Inherits from
MaintainableArtefact
Abstract class. Sub classes are:

AttachmentConstraint
ContentConstraint

Specifies a sub set of the definition
of the allowable or actual content
of a data or metadata source that
can be derived from the Structure
that defines code lists and other
valid content.

+availableDates Association to the time period that
identifies the time range for which
data or metadata are available in
the data source.

+dataContentKeys Association to a sub set of Data
Key Sets (i.e. value combinations)
that can be derived from the defi-
nition of the structure to which the
Constrainable Artefact is linked.

+metadataContentKeys Association to a sub set of Metdata
Key Sets (i.e. value combinations)
that can be derived from the defi-
nition of the Structure to which the
Constrainable Artefact is linke

continues on next page

108 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Table 1.6 – continued from previous page
+dataContentRegion Association to a sub set of com-

ponent values that can be derived
from the Data Structure Definition
to which the Constrainable Arte-
fact is linked.

+metadataContentRegion Association to a sub set of com-
ponent values that can be derived
from the Metadata Structure Def-
inition to which the Constrainable
Artefact is linked.

ContentConstraint Inherits from
Constraint

Defines a Constraint in terms of
the content that can be found in
data or metadata sources linked
to the Constrainable Artefact to
which this constraint is associated.

+role Association to the role that the
Constraint plays

ConstraintRole Specifies the way the type of con-
tent of a Constraint in terms of its
purpose.

allowableContent The Constraint contains a specifi-
cation of the valid sub set of the
Component values or keys.

actualContent The Constraint contains a specifi-
cation of the actual content of a
data or metadata source in terms
of the Component values or keys
in the source.

Attachment Inherits from Defines a Constraint in terms of
the combination of component val-
ues that may be found in a data
source, and to which a Constrain-
able Artefact may be associated in
a structure definition.

Constraint Constraint
DataKeySet A set of data keys.

isIncluded Indicates whether the Data Key Set
is included in the constraint def-
inition or excluded from the con-
straint definition.

+keys Association to the Data Keys in the
set.

MetadataKeySet A set of metadata keys.
isIncluded Indicates whether the Metadata

Key Set is included in the con-
straint definition or excluded from
the constraint definition.

+keys Association to the Metadata Keys
in the set.

DataKey The values of a key in a data set.
isIncluded Indicates whether the Data Key

is included in the constraint def-
inition or excluded from the con-
straint definition.

+keyValue Associates the Component Values
that comprise the key.

continues on next page

1.2. Information Model 109

sdmx-im Documentation, Release 0.0.1

Table 1.6 – continued from previous page
MetadataKey The values of a key in a metadata

set.
isIncluded Indicates whether the Metdadata

Key is included in the constraint
definition or excluded from the
constraint definition.

+keyValue Associates the Component Values
that comprise the key.

ComponentValue The identification of and value of
a Component of the key (e.g. Di-
mension)

value The value of Component
+valueFor Association to the Component

(e.g. Dimension) in the Structure
to which the Constrainable Arte-
fact is linked.

TimeDimensionValue The value of the Time Dimension
component.

timeValue The value of the time period.
operator Indicates whether the specified

value represents and exact time or
time period, or whether the value
should be handled as a range.
A value of greaterThan or
greaterThanOrEqual indicates
that the value is the beginning of
a range (exclusive or inclusive,
respectively).
A value of lessThan or
lessThanOrEqual indicates
that the value is the end or a
range (exclusive or inclusive,
respectively).
In the absence of the opposite
bound being specified for the
range, this bound is to be treated as
infinite (e.g. any time period after
the beginning of the provided time
period for greaterThanOrEqual)

CubeRegion A set of Components and their val-
ues that defines a sub set or “slice”
of the total range of possible con-
tent of a data structure to which the
Constrainable Artefact is linked.

isIncluded Indicates whether the Cube Region
is included in the constraint def-
inition or excluded from the con-
straint definition.

+member Associates the set of Components
that define the sub set of values.

MetadataTargetRegion A set of Components and their
values that defines a sub set or
“slice” of the total range of possi-
ble content of a metadata structure
to which the Constrainable Arte-
fact is linked.

continues on next page

110 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Table 1.6 – continued from previous page
isIncluded Indicates whether the Metadata

Target Region is included in the
constraint definition or excluded
from the constraint definition.

+member Associates the set of Components
that define the sub set of values.

MemberSelection A set of permissible values for one
component of the axis.

isIncluded Indicates whether the Member Se-
lection is included in the constraint
definition or excluded from the
constraint definition.

+valuesFor Association to the Component in
the Structure to which the Con-
strainable Artefact is linked, which
defines the valid Representation
for the Member Values.

MemberValue A single value of the set of values
for the Member Selection.

value A value of the member.
cascadeValues Indicates that the child nodes of

the member are included in the
Member Selection (e.g. child
codes)

TimeRangeValue Abstract Class
Concrete Classes

BeforePeriod
AfterPeriod
RangePeriod

A time value or values that speci-
fies the date or dates for which the
constrained selection is valid.

BeforePeriod Inherits from
TimeRangeValue

The period before which the con-
strained selection is valid.

isInclusive Indication of whether the date is
inclusive in the period.

AfterPeriod Inherits from
TimeRangeValue

The period after which the con-
strained selection is valid.

isInclusive Indication of whether the date is
inclusive in the period.

RangePeriod The start and end periods in a date
range.

+start Association to the Start Period.
+end Association to the End Period.

StartPeriod Inherits from
TimeRangeValue

The period from which the con-
strained selection is valid.

isInclusive Indication of whether the date is
inclusive in the period.

EndPeriod Inherits from
TimeRangeValue

The period to which the con-
strained selection is valid.

isInclusive Indication of whether the date is
inclusive in the period.

ReferencePeriod A set of dates that constrain the
content that may be found in a data
or metadata set.

startDate The start date of the period.
continues on next page

1.2. Information Model 111

sdmx-im Documentation, Release 0.0.1

Table 1.6 – continued from previous page
endDate The end date of the period.

ReleaseCalendar The schedule of publication or re-
porting of the data or metadata

periodicity The time period between the re-
leases of the data or metadata

offset Interval between January 1st and
the first release of the data

tolerance Period after which the data or
metadata may be deemed late.

1.2.12 Data Provisioning

112 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Class Diagram

Figure 41: Relationship and inheritance class diagram of data provisioning

1.2. Information Model 113

sdmx-im Documentation, Release 0.0.1

Explanation of the Diagram

Narrative

This sub model links many artefacts in the SDMX-IM and is pivotal to an SDMX metadata registry, as all of the
artefacts in this sub model must be accessible to an application that is responsible for data and metadata registration
or for an application that requires access to the data or metadata.

Whilst a registry contains all of the metadata depicted on the diagram above, the classes in the grey shaded area
are specific to a registry based scenario where data sources (either physical data and metadata sets or databases
and metadata repositories) are registered. More details on how these classes are used in a registry scenario can be
found in the SDMX Registry Interface document. (Section 5 of the SDMX Standards).

A ProvisionAgreement links the artefact that defines how data and metadata are structured and classified (Struc-
tureUsage) to the DataProvider, and, by means of a data or metadata registration, it references the Datasource
(this can be data or metadata), whether this be an SDMX conformant file on a website (SimpleDatasource) or a
database service capable of supporting an SDMX query and responding with an SDMX conformant document
(QueryDatasource).

The StructureUsage, which has concrete classes of DataflowDefinition and MetadataflowDefinition identifies the
corresponding DataStructureDefinition or MetadataStructureDefinition, and, via Categorisation, can link to one or
more Category in a CategoryScheme such as a subject matter domain scheme, by which the StructureUsage can
be classified. This can assist in drilling down from subject matter domains to find the data or metadata that may
be relevant.

The SimpleDatasource links to the actual DataSet or MetadataSet on a website (this is shown on the diagram as a
dependency called “references”). The sourceURL is obtained during the registration process of the DataSet or the
MetadataSet. Additional information about the content of the SimpleDatasource is stored in the registry in terms
of a ContentConstraint (see 10.3) for the Registration.

The QueryDatasource is an abstract class that represents a data source which can understand an SDMX-ML
query (SOAPDatasource) or RESTful query (RESTDatasource) and respond appropriately. Each of these different
Datasources inherit the dataURL from Datasource, and the QueryDatasource has an additional URL to locate a
WSDL or WADL document to describe how to access it. All other supported protocols are assumed to use the
SimpleDatasource URL.

The diagram below shows in schematic way the essential navigation through the SDMX structural artefacts that
eventually link to a data or metadata registration.

114 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Figure 42: Schematic of the linking of structural metadata to data and metadata registration

1.2. Information Model 115

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
StructureUsage Abstract class:

Sub classes are:

DataflowDefinition
MetadataflowDefinition

This is described in the Base.

controlledBy Association to the Provision
Agreements that comprise the
metadata related to the provision
of data.

DataProvider See Organisation Scheme.
hasAgreement Association to the Provision

Agreements for which the provider
supplies data or metadata.

+source Association to a data or metadata
source which can process a data or
metadata query.

ProvisionAgreement Links the Data Provider to the
relevant Structure Usage (e.g.
Dataflow Definition or Meta-
dataflow Definition) for which the
provider supplies data or metadata
The agreement may constrain the
scope of the data or metadata that
can be provided, by means of a
Constraint.

+source Association to a data or reference
metadata source which can process
a data or metadata query.

Datasource Abstract class:
Sub classes are:
SimpleDatasource
WebServices Datasource

Identification of the location or
service from where data or refer-
ence metadata can be obtained.

+sourceURL The URL of the data or reference
metadata source (a file or a web
service).

SimpleDatasource An SDMX-ML data set accessible
as a file at a URL.

*WebServices
Abstract class: A data or reference metadata

source which can process a data or
metadata query.

Datasource* Inherits from:
Datasource
Sub classes are:
RESTDatasource
SOAPDatasource

RESTDatasource A data or reference metadata
source that is accessible via a
RESTful web services interface.

SOAPDatasource A data or reference metadata
source that conforms to a SOAP
web service interface.

+WSDLURL Association to the URL of the
Web Service Definition Language
(SOAP) or Web Service Applica-
tion Language (REST) profile of
the web service.

Registration This is not detailed here but is
shown as the link between the
SDMX-IM and the Registry Ser-
vice API. It denotes a data or meta-
data registration document.

116 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

1.2.13 Process

Introduction

In any system that processes data and reference metadata the system itself is a series of processes and in each of
these processes the data or reference metadata may undergo a series of transitions. This is particularly true of its
path from raw data to published data and reference metadata. The process model presented here is a generic model
that can capture key information about these stages in both a textual way and also in a more formalised way by
linking to specific identifiable objects, and by identifying software components that are used.

Model – Inheritance and Relationship view

Class Diagram

Figure 43: Inheritance and Relationship class diagram of Process and Transitions

Explanation of the Diagram

Narrative

The Process is a set of hierarchical ProcessSteps. Each ProcessStep can take zero or more IdentifiableArtefacts as
input and output. Each of the associations to the input and output IdentifiableArtefacts (ProcessArtefact) can be
assigned a localID.

The computation performed by a ProcessStep is optionally described by a Computation, which can identify the
software used by the ProcessStep and can also be described in textual form (+description) in multiple language
variants. The Transition describes the execution of ProcessSteps from +source ProcessStep to +target ProcessStep
based on the outcome of a +condition that can be described in multiple language variants.

1.2. Information Model 117

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
Pro-
cess

Inherits from
Maintainable

A scheme which defines or documents the operations performed on data or
metadata in order to validate data or metadata to derive new information
according to a given set of rules.

+step Associates the Process Steps.
Pro-
cessStep

Inherits from
IdentifiableArtefact

A specific operation, performed on data or metadata in order to validate or
to derive new information according to a given set of rules.

+input Association to the Process Artefact that identifies the objects which are input
to the Process Step.

+output Association to the Process Artefact that identifies the objects which are out-
put from the Process Step.

+child Association to child Processes that combine to form a part of this Process.
+computation Association to one or more Computations.
+transition Association to one or more Transitions.

Com-
puta-
tion

Describes in textual form the computations involved in the process.

localId Distinguishes between Computations in the same Process.
softwarePackage
softwareLanguage
softwareVersion

Information about the software that is used to perform the computation.

+description Text describing or giving additional information about the computation.
This can be in multiple language variants.

Tran-
sition

Inherits from
IdentifiableArtefact

An expression in a textual or formalised way of the transformation of data
between two specific operations (Processes) performed on the data.

+target Associates the Process Step that is the target of the Transition.
+condition Associates a textual description of the Transition.

Pro-
ces-
sArte-
fact

Identification of an object that is an input to or an output from a Process
Step.

+artefact Association to an Identifiable Artefact that is the input to or the output from
the Process Step.

1.2.14 Transformations and Expressions

Scope

The purpose of this package in the model is to be able to track the derivation of data. It is similar in concept to
lineage in data warehousing – i.e. how data are derived.

The functionality of this part of the model allows the identification and documentation of the calculations per-
formed (these will normally be automated, program calculations), as well as defining structures that support a
syntax neutral expression “grammar” that can specify the operations at a granular level such that a program can
“read” the metadata and compose the expression required in whatever computer language is appropriate.

This part of the model also allows specifying and documenting the coherence rules among different data, express-
ing them as calculations (for example, the coherence rule “a + b = c” can be written as “a + b - c = 0” and checked
through the calculation “if((a + b – c) = 0, then . . . , else . . .)”).

It should be noted that the model represented below is similar in scope and content to the Expression metamodel
in the Common Warehouse Metamodel (CWM) developed by the Object Management Group (OMG). This spec-
ification can be found at:

http://www.omg.org/cwm

118 Chapter 1. Introduction

http://www.omg.org/cwm

sdmx-im Documentation, Release 0.0.1

The Expression metamodel is described in Section 8.5 of Part 1 of the CWM specification. The class diagram
shown below is an interpretation of the CWM Expression metamodel expressed in the base classes of the SDMX-
IM.

Model - Inheritance View

Class Diagram

Figure 44: Inheritance and relationship class diagram of transformation classes

Explanation of the Diagram

Narrative

There are three type of ItemScheme relevant to this model.

1. A TransformationScheme which comprises one or more Transformations.

2. An OperatorScheme which comprises one or more Operators.

3. An ExpressionNodeScheme scheme which contains one or more ExpressionNodes..

The model presented here is a basic framework which can be used for expressions and transformations, but requires
more work on elaborating its integration into the model and its actual use within the model. This elaboration will
be in a future release of the standard.

The expression concept in the SDMX-IM takes a functional view of expression trees, resulting in the ability of
relatively few expression node types to represent a broad range of expressions. Every function or traditional math-
ematical operator that appears in an expression hierarchy is represented by the +operator role on the association
to Operator which in turn comprises input and output Parameter. For example, the arithmetic plus operation “a +
b” can be thought of as the function “sum(a, b).” The “sum” is the Operator, and “a” and “b” are its Parameters.

1.2. Information Model 119

sdmx-im Documentation, Release 0.0.1

A parameter is a generic possible input and output of an operator (e.g. base and exponent are the parameters of
the power operator), while an argument is the specific value that a parameter takes in a specific calculation (e.g.
in the Einstein equation “E = MC2”. the arguments of the “power” operation are “C” (the base) and “2” (the
exponent)).The actual semantics of a particular function or operation are left to specific tool implementations and
are not captured by the SDMX-IM.

The hierarchical nature of the SDMX-IM representation of expressions is achieved by the recursive nature of the
OperatorNode association. This association allows the sub-hierarchies within an expression to be treated as actual
arguments of their parent nodes.

The model can be used equally to define data derivations and to define integrity checks (e.g. the Sum of A+B must
equal C).

Although the model defines the data structures that are used to contain a syntax neutral expression, the model itself
does not specify a syntax neutral expression grammar. Alternatively, the function can be described in a text form
either as an unstructured explanation of the function, or as a more formal language like BNF2.

The data structures work as follows:

The actual basic mathematical functions that need to be performed (e.g. sum, multiply, divide, assign (=), <, >
etc.) are defined as Operators an OperatorScheme. For each Operator the input and output Parameters, are defined
in the Parameter class.

The calculations are defined as Transformations in a TransformationScheme. A Transformation is a specific
calculation and is specified by means of an expression, which is obtained by applying one or more Operators in
the desired order (for example, in the textual form, using parenthesis) and specifying the actual arguments for the
Operators’ Parameters; the result of the whole expression is assigned (=) to the model item that is the result of the
Transformation (that is “E” in the Einstein equation). A Transformation operates on existing IdentifiableArtefacts
and its result is another IdentifiableArtefact. A calculated IdentifiableArtefact may be in its turn be an operand of
other Transformations.

The expression of a Transformation (for example, for the Einstein equation calculus, “E = M*(C**2)”) may be
decomposed in a hierarchy of ExpressionNodes (in the example, “M”, “C”, “2”, *, **). The ExpressionNode can
be a ReferenceNode, a ConstantNode or an OperatorNode. The ReferenceNode references an identifiable model
artefact (in the example, “M” and “C”). The ConstantNode is by definition a constant value (in the example “2”).
The OperatorNode references an Operator in the OperatorScheme (in the example *, **). The Transformation has
an association to its component ExpressionNodes.

The hierarchy of the ExpressionNodes conveys the order in which the operators are applied in the expression and is
obtained by means of the /hierarchy association of the OperatorNode class, in which the child ExpressionNodes are
the arguments of the parent OperatorNode. The child ExpressionNodes must correspond to the formal parameters
of the Operator referenced by the parent OperatorNode in the correct sequence. The (child) ExpressionNode can
be the result of another operation (that is another OperatorNode) or can be a Constant or can be a reference to an
IdentifiableArtefact (ReferenceNode). All IdentifiableArtefacts in the SDMX-IM have a unique urn comprising
the values of the individual objects that identify it. The structure of this urn is defined in the Registry Specification.
An example would be the urn of a code which comprises the agency:code-list-id.code-id – an actual example is
“urn:sdmx:org.sdmx.infomodel.codelist.Code=TFFS:CL_AREA(1.0).1A”.

2 BNF: Backus Naur Form

120 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Definitions

Class Feature Description
Trans-
forma-
tion

Inherits from A scheme which defines or documents the transformations
required in order to derive or validate data from other data.

Scheme ItemScheme
Trans-
forma-
tion

Inherits from
Item

An individual Transformation.

+expressionComponent Association to an Expression Node.
Expres-
sionN-
ode

Abstract class
Sub Classes
ReferenceNode
ConstantNode
OperatorNode

A node in a possible hierarchy of nodes that together define
or document an expression.

/hierarchy Association to child Expression Nodes
Refer-
enceN-
ode

Inherits from
ExpressionNode

A specific type of Expression Node that references a spe-
cific object.

references Association to the Identifiable Artefact that is the refer-
enced object.

Con-
stantN-
ode

Inherits from
ExpressionNode

A specific type of Expression Node that contains a constant
value.

value The value of the Constant
Opera-
torNode

Inherits from
ExpressionNode

A specific type of Expression Node that references an Op-
erator

+operator Association to an Operator that defines the mathematical
operator of the Operator Node.

+arguments Association to mathematical arguments of an Operator
Node.

Opera-
torScheme

Inherits from
ItemScheme

A scheme which defines mathematical operators.

Opera-
tor

Inherits from
Item

The mathematical operator in an Operator Scheme.

+input Association to the input Parameters of the Operator
+output Association to the output Parameter of the Operator.

Parame-
ter

The input or output of an Operator.

1.2.15 Appendix 1: A Short Guide To UML in the SDMX Information Model

Scope

The scope of this document is to give a brief overview of the diagram notation used in UML. The examples used
in this document have been taken from the SDMX UML model.

1.2. Information Model 121

sdmx-im Documentation, Release 0.0.1

Use Cases

In order to develop the data models it is necessary to understand the functions that require to be supported. These
are defined in a use case model. The use case model comprises actors and use cases and these are defined below.

The actor can be defined as follows:

“An actor defines a coherent set of roles that users of the system can play when interacting with it.
An actor instance can be played by either an individual or an external system”

The actor is depicted as a stick man as shown below.

Figure 45 Actor

The use case can be defined as follows:

“A use case defines a set of use-case instances, where each instance is a sequence of actions a system
performs that yields an observable result of value to a particular actor”

Figure 46 Use case

Figure 47 Actor and use case

Figure 48 Extend use cases

122 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

An extend use case is where a use case may be optionally extended by a use case that is independent of the using
use case. The arrow in the association points to he owning use case of the extension. In the example above the
Uses Data use case is optionally extended by the Uses Metadata use case.

Classes and Attributes

General

A class is something of interest to the user. The equivalent name in an entity-relationship model (E-R model) is
the entity and the attribute. In fact, if the UML is used purely as a means of modelling data, then there is little
difference between a class and an entity.

Figure 49 Class and its attributes

Figure 49 shows that a class is represented by a rectangle split into three compartments. The top compartment
is for the class name, the second is for attributes and the last is for operations. Only the first compartment is
mandatory. The name of the class is Annotation, and it belongs to the package SDMX-Base. It is common to
group related artefacts (classes, use-cases, etc.) together in packages. . Annotation has three “String” attributes –
name, type, and url. The full identity of the attribute includes its class e.g. the name attribute is Annotation.name.

Note that by convention the class names use UpperCamelCase – the words are concatenated and the first letter
of each word is capitalized. An attribute uses lowerCamelCase - the first letter of the first (or only) word is not
capitalized, the remaining words have capitalized first letters.

Abstract Class

An abstract class is drawn because it is a useful way of grouping classes, and avoids drawing a complex diagram
with lots of association lines, but where it is not foreseen that the class serves any other purpose (i.e. it is always
implemented as one of its sub classes). In the diagram in this document an abstract class is depicted with its name
in italics, and coloured white.

Figure 50 Abstract and concrete classes

Associations

General

In an E-R model these are known as relationships. A UML model can give more meaning to the associations than
can be given in an E-R relationship. Furthermore, the UML notation is fixed (i.e. there is no variation in the way
associations are drawn). In an E-R diagram, there are many diagramming techniques, and it is the relationship in
an E-R diagram that has many forms, depending on the particular E-R notation used.

1.2. Information Model 123

sdmx-im Documentation, Release 0.0.1

Simple Association

Figure 51 A simple association

Here the DataflowDefinition class has an association with the DataStructureDefinition class. The diagram shows
that a DataflowDefinition can have an association with only one DataStructureDefinition (1) and that a DataS-
tructureDefinition can be linked to many DataflowDefinitions (0..*). The association is sometimes named to give
more semantics.

In UML it is possible to specify a variety of “multiplicity” rules. The most common ones are:

• Zero or one (0..1)

• Zero or many (0..*)

• One or many (1..*)

• Many (*)

• Unspecified (blank)

Aggregation

Figure 52: A simple aggregate association

124 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Figure 53 A composition aggregate association

An association with an aggregation relationship indicates that one class is a subordinate class (or a part) of another
class. In an aggregation relationship. There are two types of aggregation, a simple aggregation where the child
class instance can outlive its parent class, and a composition aggregation where

the child class’s instance lifecycle is dependent on the parent class’s instance lifecycle. In the simple aggregation
it is usual, in the SDMX Information model, for this association to also be a reference to the associated class.

Association Names and Association-end (role) Names

It can be useful to name associations as this gives some more semantic meaning to the model i.e. the purpose of the
association. It is possible for two classes to be joined by two (or more) associations, and in this case it is extremely
useful to name the purpose of the association. Figure 54 shows a simple aggregation between CategoryScheme
and Category called /items (this means it is derived from the association between the super classes – in this case
between the ItemScheme and the Item, and another between Category called /hierarchy.

Figure 54 Association names and end names

Furthermore, it is possible to give role names to the association-ends to give more semantic meaning – such as
parent and child in a tree structure association. The role is shown with “+” preceding the role name (e.g. in the
diagram above the semantic of the association is that a Item can have zero or one parent Items and zero or many
child Item).

In this model the preference has been to use role names for associations between concrete classes and association
names for associations between abstract classes. The reason for using an association name is often useful to show
a physical association between two sub classes that inherit the actual association between the super class from
which they inherit. This is possible to show in the UML with association names, but not with role names. This is
covered later in “Derived Association”.

Note that in general the role name is given at just one end of the association.

1.2. Information Model 125

sdmx-im Documentation, Release 0.0.1

Navigability

Associations are, in general, navigable in both directions. For a conceptual data model it is not necessary to give
any more semantic than this.

However, UML allows a notation to express navigability in one direction only. In this model this “navigability”
feature has been used to represent referencing. In other words, the class at the navigable end of the association is
referenced from the class at the non-navigable end. This is aligned, in general, with the way this is implemented
in the XML schemas.

Figure 55 One way association

Here it is possible to navigate from A to B, but there is no implementation support for navigatation from B to A
using this association.

Inheritance

Sometimes it is useful to group common attributes and associations together in a super class. This is useful if
many classes share the same associations with other classes, and have many (but not necessarily all) attributes in
common. Inheritance is shown as a triangle at the super class.

Figure 56 Inheritance

Here the Dimension is derived from Component which itself is derived from IdentifiableArtefact. Both Component
and IdentifiableArtefact are abstract superclasses. The Dimension inherits the attributes and associations of all of
the the super classes in the inheritance tree. Note that a super class can be a concrete class (i.e. it exists in its own
right as well as in the context of one of its sub classes), or an abstract class.

126 Chapter 1. Introduction

sdmx-im Documentation, Release 0.0.1

Derived association

It is often useful in a relationship diagram to show associations between sub classes that are derived from the as-
sociations of the super classes from which the sub classes inherit. A derived association is shown by “/” preceding
the association name e.g. /name.

Figure 57 Derived associations

1.2. Information Model 127

	Introduction
	Framework for SDMX Technical Standards
	Introduction
	Changes from Previous Version
	Processes and Business Scope
	The SDMX Information Model
	SDMX-EDI
	SDMX-ML
	Conformance
	Dependencies on SDMX content-oriented guidelines
	Looking Forward

	Information Model
	Change History
	Introduction
	Actors and Use Cases
	SDMX Base Package
	Specific Item Schemes
	Data Structure Definition and Dataset
	Cube
	Metadata Structure Definition and Metadata Set
	Hierarchical Code List
	Structure Set and Mappings
	Constraints
	Data Provisioning
	Process
	Transformations and Expressions
	Appendix 1: A Short Guide To UML in the SDMX Information Model

